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CHAPTER I

Introduction

The interest in semiconductor dynamics is driven by the rise of solid state tech-

nology in consumer products and the pursuit of a fundamental understanding of

physical properties. High purity, perfect crystal semiconductors are readily available

and used in applications in the telecommunication, computer, and laser industries.

With femtosecond laser pulses, extremely fast dynamics can be probed, helping to

understand the fundamental interaction between light and matter on the time scale

of a few oscillations of an electromagnetic field. Optical reflectivity and transmission

of perturbed systems were the first experiments to indirectly measure the crystal lat-

tice response to ultrafast excitation. X-ray diffraction, however, is able to directly

assess the atomic positions inside the lattice. Synchrotron radiation, producing high

brilliance x-ray pulses, together with time resolved experimental methods allows for

picosecond resolution of transient dynamics in semiconductors.

Measuring acoustic phonons and strain in bulk materials has been an ongoing

area of interest in the time-resolved research community. Although there are sev-

eral proposals to explain the dynamics observed in crystals none describe nonlinear

dependencies on deposited energy in crystals far below the damage threshold. This

thesis presents time-resolved studies of strain and acoustic impulses in bulk semicon-
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ductors and provides an explanation for observed ultrafast dynamics. This work is

based on pump-probe experiments of indium antimonide (InSb) and gallium arsenide

(GaAs). X-ray diffraction simulations of strained crystals have been developed to

provide direct analysis of the data.

The remainder of this chapter serves to introduce the subject of ultrafast semi-

conductor science. Chapter II reviews relevant theories of ultrafast dynamics and

strain in semiconductors. Chapter III introduces the theory of x-ray diffraction in

perfect crystals. It continues to explain calculations for simulations of x-ray diffrac-

tion in strained crystals developed for these experiments. The experimental setup is

discussed in Chapter IV. In Chapter V, results of the optical pump, x-ray probe ex-

periment are presented for InSb and GaAs. Finally, Chapter VI concludes the study

and proposes new opportunities for development of this research.

1.1 Ultrafast Dynamics

Semiconductor crystals absorb photons of energies hν, greater than the band gap

Eg. In direct gap semiconductors, this process promotes valence band electrons to

the conduction band without a change in momentum. At high incident radiation

densities, the electron-hole pairs create an electrostatic potential large enough to

alter the periodic structure of the crystal. This deformation potential deflects atomic

planes, straining the crystal. Photo-induced strain occurs only within the penetration

depth of the light, typically 100 – 1000 nm. The perturbed atomic planes recoil as

they return to equilibrium positions, launching a coherent acoustic impulse.

The first proposed model to describe crystalline strain was a thermoelastic trav-

eling wave model where all incident radiation energy is deposited into the lattice as

heat. The resulting transient strain wave propagates at the speed of sound in the
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Figure 1.1: Typical setup for a time resolved pump probe experiment. The x-ray
pulse probes the crystalline lattice at a time after a laser pulse perturbs
the system.

material into the crystal depth, while a permanent exponential strain profile remains

at the surface. A constant strain is a good first approximation since thermal diffusion

is extremely slow compared to electron diffusion (six orders of magnitude slower) or

other transient processes in photo-excited semiconductors. In this model, the strain

response is linear with the amount of absorbed energy.

Many previous experiments have analyzed acoustic impulses and strained semicon-

ductors data with this model [1–5]. There exists omissions from this model, including

contributions from electrons and nonlinear responses to absorbed laser fluence. Other

experiments have accounted for the electrons by including electron-hole plasma dif-

fusion and Auger recombination for germanium [6]. Free carrier absorption for GaAs

has also been proposed, but has not provided satisfactory supporting evidence to this

phenomenon [7]. The experiments presented in this thesis investigates strain in InSb

and GaAs and presents a strain model to describe the nonlinear fluence dependence

in GaAs.

To measure transient strain, time-resolved Bragg x-ray diffraction is employed.

This technique has been established as a powerful tool to view transient structural

3



Figure 1.2: Example of Bragg diffraction peak for InSb.

dynamics in crystalline solids [8]. Using a pump-probe experimental setup (Fig-

ure 1.1), wafer samples of polished semiconductors are illuminated by femtosecond

pulses of amplified laser light, deforming the crystal lattice. At a variable delay, the

x-ray probe diffracts from the perturbed structure, resolving transient dynamics in

the material. The delay is systematically lengthened from time-zero, T0, or the time

when x-ray and laser pulse arrive concurrently. As the crystalline lattice is distorted,

the distance between atomic planes changes and the satisfactory angle for Bragg

diffraction shifts. Bragg peaks (see Figure 1.2) are recorded at each time point and

the center is extracted. An example of the time-resolved data for the centroid Bragg

peak shift is shown in Figure 1.3.

1.2 Thesis Motivation

The dynamics of photo-excited semiconductor systems have been the focus of

many experimental pursuits [1,4,9]. However, a detailed understanding of the lattice
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Figure 1.3: Example of Bragg diffraction peak-shift data for InSb at low fluences.

dynamics and thermalization are still illusive. These studies have used a computer

model to predict the outcome of x-ray diffraction that did not include the detail nec-

essary to investigate intensity-dependent dynamics in lattice structure across different

systems. The available programs had not been adequately benchmarked, were not

flexible in the selection of materials or x-ray energies, and were not scaleable to the

study of increasingly complicated models of real semiconductor behavior.

Furthermore, there exists unanswered questions on the linear and nonlinear effects

of InSb and GaAs. The fluence dependence of these materials are in stark contrast

with each other and offer insights to carrier generation and thermalization as well

as structural dynamics. This thesis demonstrates the correct method of constructing

strain profiles for the purpose of analyzing time-resolved diffraction experiments.
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CHAPTER II

Dynamics of Strain in Semiconductor Crystals

Strain in semiconductors generally results from lattice mismatch in atomic planes.

The lattice mismatch may be constant in time, such as a crystal epitaxially grown

on a substrate, or can be transient such as an acoustic phonon. This discussion

will focus on transient strain in crystals where strain is produced from rapid heating,

acoustic impulses, and interactions between free carriers and the lattice. The following

reviews the physics of semiconductors and crystal strain imposed upon ultrafast laser

excitation.

2.1 Semiconductors Under Ultrafast Laser Excitation

When light is incident on opaque material, several processes and interactions

occur on various time scales from femtoseconds (10−15 s) to nanoseconds (10−9 s)

which eventually transfers energy from absorbed photons to thermal vibrations in the

lattice [10]. It is important to note that the subsequent processes are not sequential,

but rather happens across overlapping intervals. The first energy transition is carrier

generation. Photons of energy exceeding the band gap are absorbed to create a single

electron-hole pair. The excess photon energy moves immediately into the lattice
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Figure 2.1: Carriers are generated through single or two photon absorption (a). Pho-
tons can also be captured through free carrier absorption (b). Figure
adapted from [10].

as thermal vibrations. Two photon absorption, a nearly instantaneous process, will

occur at high field intensities but since this process is intensity dependent and these

experiments do not have the necessary photon densities, it does not play a role in

dynamics discussed here. As well, an electron in the conduction band can absorb a

second photon, called free carrier absorption (FCA). FCA does not increase the carrier

density but creates highly energetic carriers within the lattice, potentially liberating

additional electrons at a later time through impact ionization. Carrier generation

occurs on a time scale of up to a few femtoseconds. A cartoon of these processes is

given in Figure 2.1

The crystal enters the thermalization regime after the ultrashort pulse has exited

the crystal and deposited energy into the electrons. Thermalization occurs primar-

ily through carrier-carrier and carrier-phonon scattering, depositing energy into the

lattice on the time scale of a few hundred femtoseconds to tens of picoseconds. Carrier-

carrier scattering is an electrostatic collision that does not change the total energy of

the carriers. It may take hundreds of femtoseconds for carriers to equilibrate through
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Figure 2.2: Carriers thermalize through carrier-carrier scattering (a) or carrier-
phonon scattering (b) where carriers emit a phonon as heat into the
lattice. Figure adapted from [10].

carrier-carrier scattering. Carrier-phonon scattering is an inelastic process in which

electrons absorb (or emit) phonons, gaining (or losing) energy and momentum to

the lattice. Figure 2.2 gives a schematic of the thermalization processes. Each of

these process do not change the carrier density, but decreases the total carrier energy

through the emission of phonons. All carriers generally reach thermal equilibrium

after a few picoseconds. Throughout carrier generation and thermalization, electrons

are diffusing into the crystal depth. Initially, electrons are deposited throughout the

penetration depth of the laser (∼ 100 nm – 1µm). Immediately, these carriers begin to

propagate at supersonic speeds, dependent on the diffusion constant in the material.

At longer time regimes, picoseconds to nanoseconds, the lattice carriers are re-

moved through recombination. Carrier removal takes place through radiative or non-

radiative recombination. In radiative recombination, electrons transition from the

conduction band to valence band and release energy as a photon. Since energy is

radiated away from the crystal, the lattice remains unaffected. Non-radiative recom-

bination transfers energy to the lattice and is dominated by Auger recombination.
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Figure 2.3: Radiative recombination (a) releases a photon where in Auger recombi-
nation (b), an electron and hole recombine, donating the excess energy
to a third carrier. Figure adapted from [10].

Other non-radiative processes like recombination-generation centers and defect-and-

surface recombination rely on dopants or impurities to facilitate the transition of

energy into the lattice. The samples used in this study are of extremely high purity

and other non-radiative recombination processes do not play a major roll in carrier

removal. Auger recombination goes as the cube of the carrier density, n,

∂n

∂t
= −An3 (2.1)

where A is the Auger coefficient. This contribution quickly overpowers other re-

combination contributions due to the cubic dependency. The Auger process occurs

when an electron and hole collide and recombine, giving the excess energy to third

carrier (see Figure 2.3). This three-particle process is responsible for the cubic den-

sity dependence. The higher energy electrons thermalize through carrier-carrier and

carrier-phonon scattering, giving energy to the lattice as heat. After all carriers have

recombined, the lattice is hot and identical to that of a crystal heated in by con-

ventional means where the lattice vibrations are indistinguishable between the two

9



cases.

In an opaque semiconductor heated without the use of ultrafast pulses, melting

would occur if the root mean square of the atomic displacement (vibrational ampli-

tude), 〈u2〉1/2, exceeds the Lindemann criterion, or 10% of RMS displacement. When

femtosecond pulses are used, the lattice disorder is initially due completely to the

non-thermal electronic excitation component. At large pulse energy densities abla-

tion can occur where free electron absorption dominates early dynamics and drives

lattice vibrations into a non-thermal melting regime where material is ejected from

the surface.

2.2 Strain in Semiconductors

The specific dynamics of the lattice through excitation, thermalization, and carrier

removal is of importance to many in the scientific community and the semiconductor

industry (e.g. optical communication, photovoltaics, solid state lasers). When carriers

are produced, the lattice can1 respond to the deformation potential by expanding.

The coupling between carriers and lattice creates a highly perturbed system within

the penetration depth while leaving the bulk unaffected. After the pump pulse leaves,

the deformation propagates as an acoustic pulse throughout the crystal. This stress

pulse, or coherent longitudinal acoustic phonon, moves through the lattice at the

speed of sound. An analytic model to this strain was proposed by Thomsen et al. to

describe an exponential strain profile matching the penetration depth profile [11].

This model assumes only thermal contributions with strain dependent on the depth,

z, such that the strain tensor, [η], has a single nonzero component η33. The solution

1Deformation potentials can be positive or negative, corresponding to a expansion or contraction
of the lattice. In this discussion, all materials happen to have positive deformation potentials.
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Figure 2.4: Thomsen strain model at several time points. Calculated using Equa-
tion 2.2 for InSb.

to the wave equation with the initial condition of zero strain everywhere at t = 0 is

η(z, t) = (1−R)
Qβ

AζC

1 + ν

1− ν
[
e−z/ζ(1− 1

2
e−vt/ζ)− 1

2
e−|z−vt|/ζ sgn(z − vt)

]
(2.2)

where R is the reflectivity, Q is the energy incident on the surface of the crystal ,

β is the linear expansion coefficient, A is the illuminated spot size, ζ is the absorp-

tion length, C is the specific heat per unit volume, and ν is Poisson’s ratio. The

longitudinal speed of sound, v, in the material is given by

v2 = 3
1− v
1 + v

B

ρ
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where B is the bulk modulus and ρ is the density. A list of these parameters are given

in Appendix A for InSb and GaAs.

The thermoelastic Thomsen model is mathematically sound and accurately repre-

sents an undamped wave in a homogeneous medium. Since the initial condition is zero

strain everywhere, the propagating strain pulse is bipolar and has equal contributions

of negative and positive amplitudes. The Thomsen strain is a product of thermal ex-

pansion alone where the temperature rise in the crystal ∆T (z), is a function of only

the energy deposited per unit volume within the crystal,

∆T (z) = (1−R)
Q

AζC
e−z/ζ .

That is, all of the energy in the laser pulse is converted directly into heat. This is an

approximation as previous experiments have shown that the electron-phonon coupling

time is ∼ 10 ps in many semiconductors [1,12,13]. The finite generation time smooths

out the discontinuity in the Thomsen wave model. As well, strain generation in the

Thomsen model is not physical. For ultrafast pulses, energy is deposited into the

lattice within ∼ 50 fs. In Figure 2.4, it can be seen that the strain takes an extremely

long amount of time to strain the penetration depth of the laser.

A plasma driven strain model, proposed by DeCamp et al. (a version of the this

strain model is shown in Figure 2.5), accounts for the coupling between the photo-

excited plasma and lattice [6]. The temperature profile (Figure 2.6) is dependent on

the contributions from Auger recombination and temperature diffusion,

∂T

∂t
= Dt

∂2T

∂z2
+ An3Eg

C
(2.3)

where Dt is the thermal diffusion coefficient and Eg is the electronic band gap. The
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Figure 2.5: Strain profile for the case including diffusion and recombination at several
time points. Calculated from Equation 2.5 for GaAs at a fluence of 0.25
mJ/cm2 and laser wavelength at 800 nm.

number density of carriers is reduced by Auger recombination and diffusion moves

electrons into the lattice. The diffusion length Ldiff, is proportional to the diffusion

constant and a function of time where

Ldiff ∼ 2
√
Dt,e t

and

∂n

∂t
= De

∂2n

∂z2
− An3. (2.4)

The electron diffusion (Figure 2.7) is often supersonic, creating stress deep in the
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Figure 2.6: Temperature profile for GaAs, at a fluence of 0.25 mJ/cm2, including con-
tributions from Auger recombination and thermal diffusion. The crystal
remains hot at the surface due to slow thermal diffusion and additional
heat supplied by the Auger effect.

crystal before the acoustic pulse arrives which spatially broadens the acoustic pulse

by a factor of up to five [14]. The strain profile now contains temperature and plasma

density dependences:

η(z, t) = αtT (z, t) + αen(z, t) (2.5)

where αt is the thermal expansion coefficient and αe is the electronic coupling co-

efficient, also referred to as the deformation potential [6]. A list of values for these

parameters is presented in Appendix A for InSb and GaAs. The strain, η, drives

a displacement in the lattice (strain wave) along a direction normal to the surface,
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Figure 2.7: Electron density for GaAs, at a fluence of 0.25 mJ/cm2, including con-
tributions from Auger recombination and electron diffusion. Electron
diffusion quickly reduces the carrier density at the surface, moving deep
into the crystal at early times.

governed by the wave equation,

∂2u

∂t2
= v2∂

2u

∂z2
(2.6)

where

η =
∂u

∂z
(2.7)

and u is the atomic displacement from equilibrium. Due to the contributions from

the electronic component, the shape and speed of the impulsive wave differs signif-
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icantly from the Thomsen model. The traveling wave in space and time, solved by

Equation 2.6 is shown in Figure 2.8.

It is interesting to note that the temperature profile is heavily dependent on the

Auger recombination and band gap. For every absorbed photon, the excess energy

over the band gap (hν − Eg) is transferred to kinetic energy of the electron. Af-

ter which, the temperature diffuses into the bulk and continues to rise for several

nanoseconds from the large contribution of Auger heat. The temperature profile

(Equation 2.3) in space and time is shown in Figure 2.6.

The carrier density, on the other hand, is an ever-decreasing monotonic process.

Assuming an instantaneous generation, carriers diffuse into the crystal and are recom-

bined with holes, quickly eliminating excess charge. The carrier profile (Equation 2.4)

is shown in Figure 2.7. The strain profile is simply the sum of the thermal and electron

density profiles, scaled by the respective coupling coefficients.

Decamp et al. found that in order to explain the dynamics observed in germanium,

diffusion and Auger recombination must be present in the strain model. Previous x-

ray diffraction experiments had analyzed data using the Thomsen model with only

slight modifications to approximate non-thermal terms [1, 4, 6, 12]. To correctly an-

alyze semiconductor dynamics, the differential relations (Equation 2.3, 2.4 and 2.6)

must be solved numerically.

Summarizing the progression of dynamics and strain in photo-excited semicon-

ductors: photons are first absorbed by electrons in the material. A portion of the

photon energy, equal to the band gap, goes directly into promoting electrons to the

conduction band. Excess energy, hν − Eg, is transferred to the lattice as heat. As

carriers cool, they recombine, further heating the lattice. The total strain in the crys-

tal is a scaled sum of the electron deformation and thermal distortion of the lattice,
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Figure 2.8: The absorption of energy at the surface of the crystal launches an acoustic
bipolar impulse through the depth of the material. The Auger recombi-
nation and electron diffusion drive the wave, decreasing the deformation
potential. This serves to balance the symmetry of the traveling wave.
At 1 ns, the wave looks very similar to the Thomsen model since a large
number of the electrons have been recombined. The thermal diffusion can
be seen at the surface layer with an long-lived exponential decay.
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Figure 2.9: The evolution of ultrafast excitation involves several processes: carrier
production, recombination, and thermal vibrations. These deform the
lattice structure, producing strain which then propagates into the crystal.

where carriers and temperature continuously diffuse into the bulk material. These

processes are illustrated schematically in Figure 2.9.
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CHAPTER III

X-ray Diffraction in Ideal Crystals

In 1895 Wilhelm Rontgen demonstrated that x-rays had properties unlike visible

light after producing the first x-ray radiograph showing the hand of his wife. In

the years prior to this discovery the group theory of crystals had been published

and, in 1912, M. von Laue proposed using crystals as a natural diffraction grating.

He showed experimentally that crystals generated an interference pattern analogous

to a periodic three-dimensional diffraction grating. In 1914, he received the Nobel

Prize in Physics for his work in crystals. Immediately following, the father and son

team of W.H. Bragg and W.L. Bragg proposed a different geometry with superior

experimental techniques to probe the structure of crystals, work that won them the

Nobel Prize in 1915. These inaugural experiments laid the foundation for the study

of structure at atomic length scales.

This chapter will explore the theory of x-ray diffraction. The discussion is limited

to perfect crystals, giving an overview of diffraction by x-rays in the Bragg geometry.

A more thorough discussion of space groups, imperfect crystals, and other geometries

is presented in Warren and Zachariasen [15,16].
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Figure 3.1: Three Dimensional representation of the unit cell defined by the crystal
axis a1a2a3.

3.1 X-ray Diffraction

Diffraction is the process by which light produces an interference pattern after

passing though a narrow aperture or sharp edge. As Laue showed, the periodic

structure of crystals produces interference patterns similar to that of a grating. The

basis for the first order solution to crystalline diffraction is based on Laue’s assumption

of the diffraction grating model. This method is commonly referred to as the wave

kinematical diffraction theory. The diffraction grating condition requires the product

of the distance between slits and the change in wave vector, ∆k, between the diffracted

and incident beam, kH and k0) respectively, be of integer value. The wave vectors are

of equal magnitude |kH | = |k0| and are defined along the unit vector of the incident

and diffracted directions, u0,H where k0,H ≡ 1
λ
u0,H and λ is the wavelength of the
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Figure 3.2: Relations involved in the vector representation of diffraction.

incident beam. The diffraction condition is

ai · (kHi − k0) = Hi (3.1)

where Hi is an integer, ai is the unit cell axis vector describing the periodicity of the

crystal and measuring the separation of neighboring equivalent points. Each of these

terms are indexed over three spatial coordinates where i = 1, 2, 3. It is then possible

to describe any vector in the lattice by

ri = xiai + yiai + ziai. (3.2)

where 0 ≤ xi, yi, zi ≤ 1. In three-space Equation 3.1 is known as the Laue vector

equations and express the conditions to produce diffraction maxima.

It is convenient to express the unit cell geometry in reciprocal space. Defining

the unit reciprocal lattice vector, G, (see Figure 3.2) corresponding to an allowed

reflection,
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Figure 3.3: Vector representation of the Bragg Law.

G = H1b1 +H2b2 +H3b3 (3.3)

with bi being the reciprocal vector set of ai:

b1 =
a2 × a3

a1 · a2 × a3

(3.4)

b2 =
a3 × a1

a1 · a2 × a3

(3.5)

b3 =
a1 × a2

a1 · a2 × a3

(3.6)

where a,b have the property bi · aj = δij. By construction, the reciprocal lattice

vector G is the difference in wave vectors of the incident and diffracted waves. This

difference is also called the scattering vector, ∆k, where G = kH − k0 = ∆k. If the

scattering vector deviates from the Laue conditions, the diffraction pattern does not

produce constructive interference. That is, if the coefficients of the Laue condition,

Hi, of the reciprocal lattice vector are not integers, there is no diffraction maxima.

The set Hi is also known as the Miller indices hkl. The integers hkl define G to a
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reciprocal lattice plane such that the distance normal between two planes is parallel

to the vector set ai by construction. The distance d of the interplanar spacing is

given by d = n̂ · ai/Hi = 1/|G|, where n̂ = G/|G|. The Laue equations can then be

written as

a1 ·G = h, a2 ·G = k, a3 ·G = l. (3.7)

From simple geometry (Figure 3.3), the path difference between the incident and

diffracted wave vectors is 2 sin(θ)/λ. Combining this with the definition of the scat-

tering vector ∆k = G = 1/d, the Bragg law is derived:

|kH − k0| = |G| ⇒ 2 sin(θB)/λ =
1

d
(3.8)

where the subscript B denotes a Bragg reflection.

3.2 The Structure Factor

When a plane wave is incident on a group of electrons, classical and quantum

scattering theory allows for two scattering phenomena: inelastic and elastic scatter-

ing. Compton scattering is an inelastic process wherein some energy is imparted on

an electron and diffracted radiation is Compton shifted to a longer wavelength. The

inelastic scattering is incoherent in nature and represents the sum of intensities of

scattering from individual atoms comprising the lattice. Since this scattering is both

incoherent and independent of short and long-range order, it does not provide insight

to diffraction at the Bragg peak and therefore to this discussion. The coherent, elas-

tically scattered radiation, however, gives rise to interference and Bragg diffraction.

23



To calculate the unmodified scattering from the crystal, the charge density, ρ, in a

volume dV must be assessed where the integral over the entire volume evaluates to a

single electron,
∫
ρdV = 1. The scattering amplitude from an electron is the volume

integral of the charge density and the phase difference between the radiation scattered

by the jth electron and the electron at the origin (G · rj),

f0 =

∫
ρe2πiG·rjdV. (3.9)

This phase term must be included because x-ray wavelengths are comparable to the

distance between electrons. For any atom, the scattering power f0 is a function of the

radial dependence of the electrons, so that at small values of sin θ/λ, f0 approaches

Z, the number of electrons in the atom. The electron distribution can be calculated

using the Hartree-Fock method [17].

The atomic scattering power, f0, correctly describes the scattering amplitude from

a free electron (a Thomson scattering event). If the case of a scattering event from

a group of bound electrons — such as in a crystal — is considered, the scattering

amplitude from a unit cell must be evaluated. The scattering power of the unit

cell, F0, replaces f0 where the electron distribution function of the crystal lattice, Ω,

replaces ρ, where

F0 =

∫
Ωe2πiG·rj . (3.10)

The function Ω can be found by superimposing the contributions from all electron
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distributions throughout the crystal lattice,

Ω(r) =
∑
k

ρk(r− rk) (3.11)

where rk is the direction from the origin to the kth atom. It should be noted that

ρk is not the same electron distribution of Equation 3.9 where ρ was the distribution

from an atom in free space. In this case, the atoms are bound together (binding

energy is non-zero) and this assumption is no longer valid. Furthermore, Equation 3.9

uses a classical view of the electron cloud. To fully account for all quantum effects,

this picture must be replaced with a continuous band of virtual classical oscillators.

The result of this correctly accounts for the cases with non-negligible anomalous

dispersion, for which the index of refraction decreases with increasing frequency of

the incident light. It is therefore necessary to label the scattering amplitudes f0 and

F0 for which anomalous dispersion is not taken into account and where the subscripts

are dropped for the cases when the dispersion corrections are included. It should be

noted that it is common to see the scattering power of the unit cell referred to as the

structure factor in many references. A more detailed theory of dispersion corrections

is given in Zachariasen and Cromer [16,17].

Quantitatively, the geometric part of the form factor, f0, is calculated using the

theoretical work of D. T. Cromer and J. B. Mann, to produce a set of nine coefficients

(the Cromer-Mann coefficients) in a parameterization for neutral atoms given by

f0 =
4∑
i=1

ai e
−bi(sin θB/λ)2 + c (3.12)

which is valid for values of 0 ≤ (sin θB) /λ ≤ 2.0 Å−1 and shown in Figure 3.4 [17].

The coefficients are listed in Table 3.1 for arsenide, gallium, indium, and antimony.
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Figure 3.4: Non-Dispersive part of the atomic scattering factor for antimony, indium,
arsenic, and gallium. Calculated using Cromer-Mann coefficients and
Equation 3.12 [17].

The dispersion corrections, ∆f ′ and ∆f ′′, are small and are expressed by

f = f0 + ∆f ′ + i∆f ′′ (3.13)

where the imaginary part ∆f ′′ represents a phase shift in the scattered radiation.

This term will be important when analyzing the Bragg peak shapes. Since these

corrections are a result of dispersion theory, they are dependent only on the frequency

of the incident radiation and are independent of radial distribution or geometry of

the given crystal.

The most drastic effects of anomalous dispersion manifest near or at an absorp-

tion edge, where the experimental uncertainty of these values are up to 15 - 20% very
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Element a1 a2 a3 a4 b1 b2 b3 b4 c

As 16.672 6.070 3.431 4.278 2.635 0.265 12.948 47.797 2.531
Ga 15.235 6.701 4.359 2.962 3.067 0.241 10.781 61.414 1.719
In 19.162 18.560 4.295 2.040 0.548 6.378 25.850 92.803 4.939
Sb 19.642 19.045 5.037 2.683 5.303 0.461 27.907 75.283 4.591

Table 3.1: Cromer-Mann coefficients for the geometric component of the atomic scat-
tering form factor [17,18].

near strong edges compared to ≤ 1% uncertainty away from the absorption edges.

Appropriate care must be taken around these absorption edges due to the disconti-

nuities and singularities in the data (Figure 3.5). The dispersion corrections used to

find the intensities of reflections are found experimentally and have been synthesized

by Henke et al. [19]. In recent years, a database of these terms, collectively known

as the atomic form factors, was created by the National Institute of Standards and

Measures (NIST) [18]. By interpolating between data points, ∆f ′ and ∆f ′′ can be

estimated for any x-ray energy. The dispersion correction terms for arsenide, gallium,

indium, and antimony are given in Table 3.2.

Correction 8 keV 9 keV 10 keV 11 keV 12 keV 13 keV

∆f ′As -0.9136 -1.1922 -1.56186 -2.22129 -3.81902 -1.39895

∆f ′′As 1.0169 0.82289 0.68078 0.57293 3.77479 3.21842

∆f ′Ga -1.2629 -1.7348 -2.91219 -1.9114 -0.91121 -0.49946

∆f ′′Ga 0.7857 0.63486 0.52471 3.45019 2.95286 2.61959

∆f ′In 0.1054 0.12455 0.07209 -0.01454 -0.11575 -0.22375

∆f ′′In 5.0981 4.1778 3.49162 2.96388 2.54878 2.21616

∆f ′Sb -0.0312 0.08996 0.09868 0.04877 -0.02907 -0.11992

∆f ′′Sb 5.9588 4.8901 4.09321 3.47929 2.99569 2.60756

Table 3.2: Dispersion correction terms at several energies [18].

Recalling Equation 3.10 and accounting for the dispersion corrections, the struc-
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Figure 3.5: Dispersion Corrections ∆f ′ and ∆f ′′ for antimony, indium, arsenic, and
gallium. Data from NIST Atomic Form Factor database [18].

ture factor becomes the sum over the atoms in the unit cell,

F =
∑
k

(fk + ∆f ′k + i∆f ′′k )e2πiG·r (3.14)

where F is now complex and can be written F = F ′ + iF ′′. The phase factor can

be expanded into the unit cell and reciprocal lattice vectors, ai and bi respectively,

where G · r = (hb1 + kb2 + lb3) · (xka1 + yka2 + zka3) so that

Fhkl =
∑
k

fke
2πi(hb1+kb2+lb3)·(xka1+yka2+zka3) =

∑
k

fke
2πi(hxk+kyk+zk) (3.15)

where xk, yk, zk are the fractional coordinates defined by the Bravais lattice.

For the case of a simple cubic, the lattice basis has a single atom per unit cell
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Figure 3.6: Model of the zinc blende unit cell. The diamond formation is that of the
zinc blende where all atoms are identical [20].

located at the origin, or a fractional coordinates of (0,0,0). Plugging this into Equa-

tion 3.15, Fhkl = f . For a body-centered cubic (BCC) of a single element, the

lattice contains two atoms with fractional coordinates (0,0,0) and
(

1
2
, 1

2
, 1

2

)
giving

Fhkl = f [1 + e2πi(h+k+l)]. The zinc blende structure, shown in Figure 3.6, is the Bra-

vais lattice of GaAs and InSb and contains eight atoms per unit cell. For GaAs, the

unit cell contains 4 gallium atoms and 4 arsenic atoms with fractional coordinates

shown in Table 3.3.

Ga

0 0 0
1
2

1
2

0
1
2

0 1
2

0 1
2

1
2

As

1
4

1
4

1
4

3
4

3
4

1
4

3
4

1
4

3
4

1
4

3
4

3
4

Table 3.3: Fractional lattice coordinates for GaAs in a zinc blende structure

The choice of atomic origin is arbitrary so that fGa and fAs are interchangeable.
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Plugging these coordinates in for xk, yk, zk in Equation 3.15, the structure factor

becomes

Fhkl = fGa[e
2πi(0) + eπi(h+k) + eπi(h+l) + eπi(k+l)]

+ fAs[e
1
2
πi(h+k+l) + e

1
2
πi(3h+3k+l) + e

1
2
πi(3h+k+3l) + e

1
2
πi(h+3k+3l)].

Fhkl vanishes for terms where h, k, l are of differing parities. For those reflections

[(100), (210), (312), etc...] the scattering power is zero and the reflections are forbid-

den. The allowed reflections of the zinc-blende or diamond lattice has values of h, k, l

which are all even or all odd [(111), (200), (220), etc...]. The structure factor of allowed

reflections reduces to

Fhkl = 4
[
fGa + fAs e

1
2
πi(h+k+l)

]
. (3.16)

The diffracted scattering power, FH is compared to the incident power, F0 to find

the relative refracted intensity where in the Miller formulation, F0 = F000, and is the

structure factor for the incident wave.

Energy (keV) F000(InSb) F400(InSb) F000(GaAs) F400(GaAs)

8 400.27 - 44.23i 260.35 - 41.92i 247.13 - 7.21i 149.14 - 6.96i
9 400.83 - 36.27i 260.88 - 34.38i 244.12 - 5.83i 146.25 - 5.63i
10 400.66 - 30.34i 260.72 - 28.75i 237.94 - 4.82i 140.28 - 4.65i
11 400.11 - 25.77i 260.20 - 24.43i 239.30 - 16.09i 141.58 - 15.50i
12 399.40 - 22.18i 259.52 - 21.02i 236.91 - 26.91i 139.25 - 25.98i
13 398.60 - 19.30i 258.77 - 18.29i 248.24 - 23.35i 150.20 - 22.54i

Table 3.4: Structure factors for the (400) reflection at various energies for InSb and
GaAs.

The effect of thermal vibrations in this discussion has so far been omitted. If, as a

result of thermal vibrations, the lattice experiences large deviations from equilibrium
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positions, atoms spend more time in the higher intensity wave field of the x-rays,

leading to higher absorption. To account for this additional attenuation, the atomic

scattering factor fk is replaced by fke
−Mk where Mk is the Debye-Waller factor for the

kth atom. This is calculated from the average atomic displacement from equilibrium

position, 〈u2
k〉, by

Mk = 8π2〈u2
k〉
(

sin2 θ

λ

)2

. (3.17)

The Debye-Waller factor reduces the magnitude of structure factor, attenuating the

diffracted intensity, as well as reduces the width of the diffraction peak. A summary

of the atomic displacements is given in Table 3.5 which shows the temperature depen-

dence. The effect of the Debye-Waller factor is more easily seen at high temperatures

and high reflection angles.

Material Element 100 K 200 K 400 K 600 K 800 K

InSb In 0.006102 0.011711 0.023163 0.034671 0.046194
Sb 0.005274 0.010085 0.019926 0.029821 0.039728

GaAs Ga 0.003397 0.006038 0.011658 0.017368 0.023101
As 0.002949 0.005201 0.010014 0.014909 0.019827

Table 3.5: Average atomic displacements for InSb and GaAs at various temperatures.
Values shown in Å2. Table adapted from [21].

3.3 Kinematic Diffraction

In the above sections, the scattering amplitude from a single atom and a unit

cell was derived. The results from a unit cell must be extrapolated to estimate the

diffracted intensity of a small crystal. To find the scattering amplitude for the entire

crystal, a first order approximation might simply be to superimpose the contributions
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of each unit cell across the entire crystal, with proper handling of the phase differences.

The location of any unit cell from the origin can be found by the unit vector AL =

L1a1 + L1a2 + L1a3 where Li is the lattice parameters for the associated directions

âi. The total scattering amplitude from a single unit cell located at AL is Fe2πiG·AL ,

where the phase difference is with respect to the unit cell at the origin. The total

diffracted amplitude across all unit cells becomes

EH = E0 F
∑
L

e2πiG·AL (3.18)

and E0,H is the incident and diffracted electric field amplitude. Expanding the sum-

mation, assuming N1N2N3 = N is the total number of unit cells

∑
L

e2πiG·AL =

N1−1∑
0

e2πiL1G·a1

N2−1∑
0

e2πiL2G·a2

N3−1∑
0

e2πiL3G·a3 (3.19)

which can be reduced to the form

EH
E0

= F
∏
i

e2πiNiG·ai − 1

e2πiG·ai − 1
. (3.20)

Finally the fractional reflected intensity, IH/I0, is found by multiplying the ratio of

the amplitudes with its complex conjugate to give

IH
I0

= |F |2
∏
i

sin2 (πNiG · ai)− 1

sin2 (πG · ai)− 1
. (3.21)
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When the Laue condition (Equation 3.7) is satisfied, the scattering intensity reduces

to

IH = I0|F |2N2 (3.22)

This approach to solving for the scattering intensity has several assumptions that

allow it to be an excellent first order approximation to perfect crystal reflections and

serves as a good estimate for small, mosaic, or highly imperfect crystals. That is to

say, this method is only acceptable for crystals comprised of a small number of unit

cells, crystals that maintain short range order but not long range, or crystals with

defects.

The obvious omission to this derivation is absorption. Two types of absorption

occur in the crystal. In the first type, incident photons suffer true absorption through

the photoelectric effect where electrons absorb energy and are promoted to a differ-

ent band or ejected from the atom. Quantitatively, normal absorption is described

through

µn =

(
e2

mc2

)(
λ

2πε0V

)
F ′′ (3.23)

where, again, F ′′ is the imaginary part of the structure factor in Equation 3.14, e and

m are the charge and mass of an electron, c is the speed of light, ε0 is the permittivity

of free space, and V is the unit cell volume. Absorption along any other direction

has a smaller coefficient since the absorption only depends on the depth from the

surface where in a direction θ from the normal, µθ = µn cos(θ). The quantity µ is

the fractional intensity decrease in the intensity per unit length where this absorption
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obeys the Beer-Lambert Law,

I(z) = I0e
−µz (3.24)

for any depth z. The theory presented above can be easily corrected for normal

absorption by including e−µz to Equation 3.21.

In the second type of absorption, the incident beam interacts with the diffracted

beam in a process known as extinction. This interference only occurs when the Laue

condition is satisfied. Extinction can not be easily accounted for in the kinemati-

cal diffraction theory of Equation 3.21 and a new theory is necessary to accurately

describe this physical process. This new theory is required to include the mutual de-

pendencies of the incident and diffracted beams by creating a coupled system. This is

done by modeling the interaction as coupled coherent oscillators and for this reason,

is known as the dynamical theory of x-ray diffraction.

3.4 Dynamical Diffraction

The theory of kinematic diffraction makes an assumption that each unit cell of

the crystal is independent of each other. To correct for this inaccuracy, the theory of

dynamical diffraction was developed first by C. G. Darwin in 1914, and in a different

formulation by P. P. Ewald in 1916. The theory has been updated and improved by

many others, yet the greatest contribution was by M. Von Laue in which Maxwell’s

equations for a periodic complex dielectric constant were solved. In the Laue de-

scription, the wave field inside the crystal is considered as a single entity where the

incident and diffracted beams coherently interact and energy is exchanged between

the two (see Figure 3.7). It should be said that all three formulations are correct,
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Figure 3.7: Dynamical diffraction illustration where incident and diffracted beams
create a coupled system.

however the effects of absorption are implicitly included in Ewald and Laue. The

discussion presented here only reviews the Bragg case of dynamical diffraction. A

study of the Laue diffraction case1 is given in Batterman and Cole [22].

According to the Darwin case — that is, no absorption (Im(Fhkl) = F ′′hkl = 0) —

the peak has a region of total reflection where |IH/I0| = 1 (blue curve in Figure 3.8).

In 1930, J. A. Prins adapted this work to naturally include absorption through the

structure factor. The complex structure factor works to reduce the reflection intensity

across the region of total reflection, yet more importantly, includes the asymmetry

of the reflection (red curve in Figure 3.8). In general, the attenuation due to ex-

tinction (negative interference) is many times greater than that produced by true

absorption. To physically explain extinction, the most intuitive approach is the wave

field treatment. At the surface, the wave nodes are located at the atomic plane, at

the low-angle side of the reflection. As the incident angle increases, the nodes move

linearly with angle until the atoms rest on the antinodal plane at the high-angle side

1Laue diffraction uses a different geometry than Bragg diffraction and uses non-monochromatic
x-rays to gain information on atomic structure.

35



Figure 3.8: Darwin (blue) and Dawrin-Prins (red) rocking curves.

of the reflection range. As the atoms move into the higher amplitude wave field, the

absorption contribution increases from each particle, giving rise to an asymmetric

pattern. A cartoon of this shift is presented in Figure 3.9.

Another great advance to the efforts of this field came in 1962 and 1964 respec-

tively, when S. Takagi and D. Taupin independently developed a dynamical theory

which can be applied to a distorted or strained crystal [24, 25]. This theory removed

any condition on thin crystals or small Bragg angles, treating the entire bulk as does

the Laue formulation for the unstrained case by directly solving Maxwell’s equations.

The Takagi-Taupin equation is

iλ
π
β0 · ∇D0(r) = ψ0D0(r) + ψHDH(r)

iλ
π
βH · ∇DH(r) = ψ0DH(r) + ψHD0(r)− αHDH(r)

(3.25)

where the parameters are given in Table 3.6. The Taukagi-Taupin equation expresses
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Figure 3.9: As the wave field moves from atoms residing at field nodes (lower fig-
ure) to having atoms at antinodes (upper figure), the absorption from
an atom increases producing an asymmetric Bragg diffraction pattern.
Figure adapted from [23].

the variation in the complex wave amplitudes in the incident and diffracted directions

(r). In 1986, C. R. Wie published a method to incorporate depth-dependent strain for

an arbitrarily thick crystal [26]. This method builds on the Takagi-Taupin equation

and has been indispensable when modeling Bragg diffraction from strained crystals

[1, 4–7,14,27].

3.5 Numerical Modeling

The Wie method begins at the infinite atomic plane and calculates the rocking

curve for the unstrained case, or the infinite crystal solution. At each depth iteration,

the rocking curve is again calculated where the top layer solution is the fully strained

case and comparable to diffraction data. The implementation of this method is most

efficiently done by using the inner loop to iterate depth and the outer to iterate angle.

The set of parameters shown in Table 3.6 are necessary for the Wie method [26,28].

For FH , the term in the exponential
(
exp[−(8π2 sin2 θB/λ

2)u2]
)

is the Debye-

Waller factor from Equation 3.17 and can be taken into account when the structure
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Wave Vectors: β0,H

Complex Wave Amplitudes: D0,H(r)

Polarizability per Unit Volume: ψ0,H = −(e2/mc2)(λ2/π2)(F0,H/V )(1/4πε0)

ψ0,H = ψ′0,H + iψ′′0,H

Structure Factor: F0 = F000 and FH = Fhkl

Unit Cell Volume: V

Normalized Depth: A = zπ|ψ′H |/λ
√
γ0γH

Depth inside the crystal: z

Direction of Cosines: γ0,H , b = |γ0/γH | = 1 for symm. reflections

Incident Absorption Parameter: g = (1 + b)ψ′′0

Diffracted Absorption Parameter: k = ψ′′H/ψ
′
H

Deviation from Bragg Angle: y = [(1 + b)ψ′0 − bαH ] /(2|ψ′H |
√
b)

Displaced Structure Factor: FH = F 0
H exp[−(8π2 sin2 θB/λ

2)u2]

Average Atomic Displacement: u

Angle of Reflection: αH = −2(θ − θB) sin 2θB − (c1ε1 + c2ε2)

Strain Perpendicular to Surface: ε1

Strain Parallel to Surface: ε2

Strain Strength: c1 = 2 sin θB[cos2 φ tan θB ± sinφ cosφ]

(φ = 0 for all symmetric bragg cases) c2 = 2 sin θB[sin2 φ tan θB ∓ sinφ cosφ]

Table 3.6: List of parameters for the Wie method of calculating rocking curves.
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Figure 3.10: Example of an asymmetric Bragg reflection on a crystal cut such that
the angle between the surface and reflecting plane is nonzero.

factor is calculated. The direction of cosines term b is to account for asymmetric

Bragg reflections, where the crystal has not been oriented or cleaved along an atomic

plane, in a geometry similar to Figure 3.10.

The scattering amplitude is given by the differential equation

i
dX

dA
= (1 + ik)X2 − 2(y + ig)X + (1 + ik) (3.26)

where X =
√
bDH(r)

D0(r)
is the scattering amplitude. Analytically integrating Equa-

tion 3.26 provides the iterative Wie solution,

Xn+1(An,n−1) =
sXn−1 + i(B + CXn−1) tan [s(An − An−1)]

s− i(C +BXn−1) tan [s(An − An−1)]
, (3.27)

where A is dependent on the depth from the surface z, B = −(1+ ik), C = y+ ig, and

s =
√
C2 +B2. A0 is defined as the infinite crystal depth. The term s is not straight

forward as it involves the square root of a complex number which must be carefully

treated [26]. The notation of Equation 3.27 differs from that in Reference [26] where

39



Figure 3.11: A schematic of the Wie algorithm. The solution originates at the infinite
crystal solution depth (no strain) and builds a rocking curve at each
layer towards the surface. The top layer solution gives the appropriate
dynamical diffraction solution.

the subscript n, n± 1 are omitted. The Wie algorithm begins deep within the crystal

where no strain exists, and the diffraction pattern is that of a perfect crystal. Then,

it is imposed that at the maximum crystal depth (A0), X(A0) = X0. A process

schematic for the Wie method is given in Figure 3.11. This relation is easily derived

from Equation 3.27, where the notation found in Reference [26] is used, setting the

left hand side to X0,

X0 =
sX0 + i(B + CX0) tan(s(A− A0))

s− i(C +BX0) tan(s(A− A0))
. (3.28)

Collecting terms of X0,

0 = BX2
0 + 2CX0 +B
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and solving for X0 gives

X0 =
−C ±

√
(C2 −B2)

B

where the minus sign gives the appropriate and physically significant solution

X0 = − B

C −
√
C2 −B2

. (3.29)

The infinite solution produces curves such as those shown in red in Figure 3.12. Strain

in the crystal distorts the diffraction peak resulting in larger peak widths, reduced

intensities and creates ripples off the Bragg peak. Experimental diffraction data

usually can not resolve the sideband structures shown here as the angular divergence

and energy spread of the x-ray beam are too large; however these distortions of the

diffraction peak do appear as asymmetric peak shapes in strain crystal structure.

3.6 Comparison with χ0,H

To test the accuracy of the Wie calculation, an x-ray database that calculates

crystal susceptibilities (in this formulation χ0,H = ψ0,H) for scattering and Bragg

diffraction, created by S. Stephanov, is used [29]. This database is heavily used within

the x-ray community as an accepted source for accurate calculations of angles, widths,

intensities and line shape of Bragg peaks. The database can produce diffraction peaks

for more than 100 samples at any energy from 5 – 700 keV. The limitation of this

calculator is that it is only applicable to the unstrained crystal case and is directly

comparable to only the infinite solution from Wie. Unstrained InSb and GaAs crystals

are compared to the solutions of χ0,H in Figure 3.13 and 3.14 at room temperature.
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Figure 3.12: The unstrained crystal produces a smooth diffraction peak (red). Af-
ter the strain has affected the crystal, the lattice deforms and produces
lumps on either side of the peak (blue). Calculated using Equation 3.27
with a Thomsen model strain profile (Equation 2.2) for InSb. The wig-
gles on the sides of the peak are related to the phonon modes that exists
in the crystal. A Fourier transform of the diffraction pattern will give
the wave vectors present in the material.
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Figure 3.13: Direct comparison between the Wie (ψ0,H) algorithm and χ0,H for InSb
at the (400) reflection. Wie is shown in blue, χ0,H in green. A subtraction
residual plot of the difference in the two algorithms (ψ0,H − χ0,H) are
shown above each plot. Sb absorption edge at 4.6984 keV.
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Figure 3.14: Direct comparison between the Wie (ψ0,H) algorithm and χ0,H for GaAs
at the (400) reflection. Wie is shown in blue, χ0,H in green. A subtrac-
tion residual plot of the difference in the two algorithms (ψ0,H − χ0,H)
are shown above each plot. Ga absorption edge at 10.3682 keV, As
absorption edge at 11.865 keV.
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CHAPTER IV

Experimental Setup

The experiments presented here were performed at the Advanced Photon Source

(APS) at Argonne National Laboratory. The APS is a third generation synchrotron

producing x-ray pulses near 1 Å in wavelength, allowing for precise measurements on

the atomic scale. To produce x-rays of high brilliance, insertion devices (ID) are used

at each of the 34 beamlines that comprise the APS. In addition, each beamline is

equipped with a single bend magnet able to produce x-rays and support experiments.

Sector 7 (7-ID) is part of the X-ray Science Division, operated by the Time Resolved

Research Group, and was used to carry out the experiments of this study. Novel

detector techniques were developed to use in time-resolved studies at 7ID for this

study

4.1 X-ray source

Synchrotrons produce electromagnetic radiation through the acceleration of charged

particles, usually electrons. At the APS, electrons are thermally emitted from a hot

cathode and accelerated by an RF electric field in a linear accelerator (LINAC), after

which bunches of electrons at 450 MeV are injected into a booster synchrotron where
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Figure 4.1: Schematic of experiment floor. Image taken from www.aps.anl.gov.

they are further accelerated (see Figure 4.1). The booster ring is synchronized to the

outer storage ring with an external RF field.

The RF fields acts to compress individual bunches both spatially and temporally.

The storage ring RF is set at 352 MHz where a single cycle defines a bucket, or

electron bunch timing position. The APS has four operating modes with different

electron distribution in the storage ring while keeping the average current constant

through all modes. The standard operating mode consists of 24 bunches spaced evenly

around the ring at about 153 ns apart. Other operating modes include 324 and 1296

bunch mode and a hybrid fill mode. Periodically, the extra electrons must be injected

into the storage ring to keep the average current constant. In the standard operating

mode, this is done by selecting a bunch and injecting additional electrons from the

injector synchrotron. When this happens, the current in a single bunch will jump

dramatically (∼ 10 %), and is referred to as a top-up occurrence.
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Figure 4.2: Schematic of undulator insertion device. Image taken from
www.aps.anl.gov.

The APS storage ring circumference is 1104 m and contains more than 1,000

electromagnets to guide 7 Gev electrons traveling at nearly the speed of light. A third

generation synchrotron like the APS is built in a geometry comprising many straight

segments. At the intersection of two straight segments, a dipole magnet is placed in

the electron beam to bend the electrons. The straight segments have insertion devices

which produce the vast majority of the useable x-rays for each beamline. At the APS,

most insertion devices are undulators, consisting of evenly spaced, alternating poled

permanent magnets which vigorously accelerate electrons left and right, generating

extremely bright x-ray pulses (see Figure 4.2).

When the direction of the magnetic field changes, the bunches accelerate (change

directions) and emit photons. Since photons are released to conserve energy, the

emitted photon wavelength is dependent on the strength of the magnetic field, B0, the

electron velocity, ve, and the spacing of magnets in the undulator. The fundamental
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wavelength, λ1, of radiation from an undulator is related to the periodicity of the

undulator, λu, by

λ1(θ) =
λu
2γ2

(
1 +

K2

2
+ (γθ)2

)
(4.1)

where θ is the angle between the undulator axis and observation,

γ ≡ 1√
1− β2

=
1√

1− v2e
c2

and

K =
eB0λu
2πmec

= 0.934λu(cm)B0(T) (4.2)

where e is the charge of the electron, me is the mass of the electron, and c is the speed

of light [23]. The relative bandwidth of the nth harmonic is

∆λ

λ
∼=

∆ω

ω
∼=

1

nN
(4.3)

where N is the number of magnetic poles in the undulator.

At sector 7, the undulator has a total length of 2.4 m with a magnetic period of 3.3

cm and produces photon fluxes of up to 1015 photons per second. The fundamental

harmonic tuning range is roughly 3 to 12.5 keV, with a high harmonic generation

able to produce 100 keV x-rays. For 24 bunch mode, the temporal pulse width of the

x-rays is dictated by the electron bunch length of ∼ 70 ps at full width half maximum.
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Figure 4.3: Sector 7 beamline layout. TR = time-resolved. WB = white beam. Scale
in meters from storage ring. Image taken from [30].

4.2 Beamline layout

The spatial profile and spectral distribution of the x-ray beam from the undulator

are much too large for accurate x-ray diffraction measurements. Using Equation 4.3,

the spectral bandwidth is on the order of ∼ 1%. In order to measure changes in

diffraction peak shifts, it is necessary to reduce the spectral bandwidth to < 0.01%.

This is accomplished by using Bragg diffraction from a water-cooled diamond (111)

double-crystal monochromator to reduce the energy bandwidth to ∆E/E =∼ 5 ×

10−5. By choosing either the fundamental undulator radiation or a higher harmonic,

the beamline can produce monochromatic x-ray at energies from 3 to 24 keV.

These experiments were performed in the C hutch (7-IDC) (see Figure 4.3). This

hutch is dedicated to time-resolved diffraction experiments using monochromatic

beam. An amplified femtosecond laser is brought in from Hutch E by evacuated

beam pipe through Hutch D. As the x-rays arrive in Hutch C, they pass a set of

collimating slits (JJ slits), which confine the x-rays to ∼ 1 mm × 0.5 mm, and a set
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Figure 4.4: Top-up occurrence. The normalization detector (top) has a dramatic
change in observed scattering events. The unexpected jump in diffracted
intensity at the downstream detector (bottom) can be normalized to com-
pensate for the jump. Data from Scan 784 on GaAs.

of attenuation filters before reaching a scattering foil. This foil has a low x-ray cross

section and scatters only a small portion of the upstream x-rays where the scattered

radiation is detected by a single photon counting detector. If a time resolved experi-

ment is tracking a bunch that is topped up, the diffraction intensity will increase due

to the increased photon flux. With this upstream detector, this additional intensity

detected can be normalized, eliminating any discontinuous data (see Figure 4.4).

Beyond the upstream scattering detector are a pair of focusing Kirkpatrick Baez

(KB) mirrors. The KB mirrors are 200 mm long, rhodium coated silicon trapezoidal

mirrors in a helium-gas enclosure. The x-rays arrive at the sample, mounted on

a six-circle Huber diffractometer. In the case of the experiments here, x-rays were
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Figure 4.5: Experimental layout of a pump-probe experiment done at APS 7ID-C.
WP = wave polarizer, PBS = polarizing beam splitter, WB = white
beam.

focused to 20 µm horizontally and collimated with upstream slits to 50 µm vertically

to achieve maximum x-ray intensity with minimal vertical divergence at the sample.

4.3 Pump-Probe X-ray Experiments

Ultrafast processes, which take place on the order of picoseconds or femtoseconds,

are much too fast for any electronic detector system. To resolve effects with high

temporal resolution, the shutter speed — or time over which the detector records

information — must be on the order of the time scale of the action. It is then

necessary to use ultrafast pulses of light to record ultrafast dynamics. If a long pulse,

or continuous beam of radiation were used, the effects would be averaged over the

length of the pulse and transient effects would be ignored. Therefore, in ultrafast

experiments, very short pulses of light are needed to resolve the structural or optical

properties of materials.
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The experiments presented here consisted of an optical pump, x-ray probe setup.

First a pump pulse being absorbed by the sample disturbing the structure of the ma-

terial. At some fixed time later, a probe beam arrives. The change in system configu-

ration can be inferred by the change in reflectivity, absorption, or diffracted intensity

between the unperturbed and perturbed case. In the cases presented here, structural

changes in crystal formation are examined using the change in x-ray diffraction. The

pump beam is an optical-wavelength amplified femtosecond laser. An example of a

pump-probe experiment layout is given in Figure 4.5.

In these x-ray experiments, samples are mounted on a six-circle Huber diffrac-

tometer. This has the capability of placing a sample at any orientation with respect

to the incident beam. A crystal is rocked about a symmetric reflection on an axis

perpendicular to the incident beam and parallel to the crystal planes, making an an-

gle θ between the crystal and beam. Since the diffracted beam also makes an angle θ

with the surface, the detector is positioned at an angle 2θ with respect to the beam.

In the experiments presented here, the detector arm is left at a fixed 2θ position and

the crystal is rocked about a Bragg angle, producing rocking curves. Additionally,

the motors on the diffractometer controlling the changes in crystal orientation may

be called by the orientation name (θ-motor, 2θ-motor, χ-motor, etc.).

4.4 Detectors

In order to record single diffraction events, detectors must be able to differentiate

between x-ray bunches. This is essential to perform time-resolved experiments since

low speed detectors average over multiple bunches losing the transient information

recorded in each x-ray pulse. In normal operating mode, the bunches arrive nearly

every 153 ns, therefore, it is required that the detectors completely recover from
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residual changes resulting from the arrival of the previous bunch within ∼ 100 ns.

The high-speed detector chosen for these experiments is a silicon avalanche photodiode

(APD) which can be configured to be either a single photon counting device or a fast

integrated intensity detector by adjusting the high voltage bias and amplifier gain.

4.4.1 Counting Mode

In photon counting mode, the APD is biased to nearly the breakdown voltage

of silicon. This extreme biasing allows the detector to measure single x-ray events

through a process known as avalanching. When photons of energy greater than the

silicon energy gap are absorbed, an electron-hole pair is created and violently collides

with other electrons due to the large bias. After a few collisions, the charge is enough

to be detected by the electronics as a current. While the charge carriers exit the

bulk of the silicon, the detector experiences a deadtime — a finite time needed to

reestablish the biasing voltage, during which time the detector is unable to resolve

additional photons. A detector deadtime underestimates the number of actual x-ray

events and a statistical model must be used to estimate the actual number of counts.

If a detector is dead for a time τ after each single event, the arrival of additional

x-rays in the interval 0 ≤ t ≤ τ is not counted. Additionally, the time needed to

reestablish the bias is extended by a time δτ . This is the extended deadtime model

and is generally used for slower detectors such as scintillators using a single channel

analyzer.

For the cases of fast detectors used at Sector 7 and other synchrotron-based ap-

plications, the model is slightly different [31]. If the deadtime is less than the x-ray

pulse separation, any photons arriving during that time will be registered as a single
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Figure 4.6: Deadtime correction for counting detectors. Observed counts shown in
circles in blue, true counts in red. The number of true counts is given by
Equation 4.4.

count. This is known as the isolated deadtime model and gives a true count rate of

NT = −1

τ
ln (1− τNO) (4.4)

where NT , NO are the true and observed count rates. Figure 4.6 shows an example

of the observed and true counts for an InSb reflection.

The associated uncertainty in the estimation of the true count rate is dependent

on the statistical uncertainty in NO given by the square root of the number of counts,

√
σNO , and the uncertainty in the deadtime, στ . The uncertainty in NT , then, is

found by propagating error in quadrature with respect to NO and τ . The resulting
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Figure 4.7: The counting statistics are slightly different for deadtime corrected mea-
surements. Using Equation 4.5, error bars are fit to the corrected data.

relative error for the isolated deadtime model of Equation 4.4 is

σNT
NT

=
1

NT (1− τNO)

√
NO

t
. (4.5)

When used in counting mode, the APD output is sent directly to a constant

fraction discriminator (CFD). The CFD compares voltage pulses from the APD to

a threshold level (typically 25 − 50 mV) to separate signals originating from x-rays

away from noise, which can be large at the output of a high-gain device such as an

APD. The CFD outputs digital NIM signals which are then sorted into timing bins

and individually counted.
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4.4.2 Proportional Mode

When the APD is not critically biased, it can collect data using a proportional

voltage mode. In this case, incident photons again create electron-hole pairs and an

applied electric field moves them in opposite directions registering a current. The

current is proportional to the number of incident photons and requires no deadtime

corrections due to the ample number of valence electrons in the penetration depth of

silicon and constant lower-voltage biasing. This method is very similar to that of an

optical photodiode with a low bias. The output is recorded as a voltage reading with

a constant error bound equal to the noise level of the APD. All efforts are taken to

ensure that only diffracted x-rays arrive at the APD by shielding the detector with

foil and black cloth as well as an extra set of slits on the detector arm.

There exists significant advantages to using an APD in proportional mode. Be-

cause of the high count rates associated with synchrotron radiation, counting mode

often is plagued by high deadtime corrections which introduce significant uncertainty.

In order to maximize the signal to deadtime error, the count rate is limited by reduc-

ing the number of x-rays in the monochromatic beam. In proportional mode, however,

photon fluxes of up to 1013 photons per second, the maximum monochromatic flux

at 7ID, are still within the linear range of the detector with proper choice of bias and

gain.

4.5 Data Acquisition / Ztec Oscilloscope

For the proportional mode detectors, the x-ray pulse train is recorded through

time. The analog voltage output is sent into a fast triggering oscilloscope to record

the x-ray pulse shape and height. The APS systems control is an open source software
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Figure 4.8: Raw data from averaged detector data in proportional mode. Figure
shows negative-going spikes. The deviation in the pulse heights are due
to the different current in each bunch. Data shown here has been averaged
over 1024 triggers.

platform called EPICS, (Experimental Physics and Industrial Control System). In

previous experiments where an oscilloscope was used, signals arriving from the detec-

tor were processed by an oscilloscope, then uploaded to a separate EPICS client, and

finally uploaded to the EPICS servers. This processing and uploading has a finite

time and results in the oscilloscope stalling, being unprepared for the next bunch and

failing to trigger since it was still trying to offload data to the EPICS client.

The solution to this problem is a fast triggering oscilloscope that is a native EPICS

client. In this situation, there is no need for an intermediate step and the oscilloscope

passes data directly to the servers. Ztec Instruments provided an oscilloscope with

exactly these specifications, able to sample every 2 ns, sufficiently fast for the recovery
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Figure 4.9: Timing diagram for a proportional mode pump-probe experiment at 7ID-
C. When counting detectors are used, the detector outputs to a triggered
analog to digital counter.

time of the APD (∼ 75 ns). The Ztec will trigger every 1 kHz, given by the external

triggering signal from the Pockels cell. The oscilloscope makes 1024 averages then

offloads the data to the EPICS servers.

An example of the x-ray pulses, recorded by the Ztec oscilloscope, are shown in

Figure 4.8 where the sharp negative edges are x-rays arriving at the detector and

the curvature of the pulses is due to the recovery time of the APD since the x-ray

pulses are only ∼ 100 ps long. Each pulse is segmented and a smoothing function is

fitted to determine the peak height. The maximum value for each curve is recorded,

defining the diffracted intensity for the particular x-ray pulse. Since the triggering is

synchronized to the storage ring, each x-ray pulse corresponds to a particular electron

bunch.
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Typically, there are three bunches that are followed: laser-off, laser-on, and laser-

late. Laser-on and laser-off are the x-rays immediately before the laser pulse arrives

at the sample and immediately after the laser arrives. Laser-late is the second bunch

after laser excitation. These three bunches gives the initial condition of the sam-

ple (laser-off), the excited state (laser-on), and the long time condition 153 ns later,

showing thermalization (laser-late). A schematic of the timing system used for pro-

portional mode is given in Figure 4.9

Running an experiment with proportional mode detectors currently has one major

downfall. As an EPICS platform device, the oscilloscope is controlled using process

variables (PV) files to carry out particular tasks. For the Ztec, technical problems

such as reading in PVs, recalling saved PVs after a restart, and saving to the EPICS

servers have been an ongoing issue. This is largely avoided by a specific protocol to

load PVs and increasing the time between data points when the Ztec accesses the

servers to upload data. This protocol is given in Appendix B.

4.6 Laser System

A titanium sapphire Kerr-Lens modelocked 20 fs laser oscillator (manufactured by

Coherent, Inc) produces a pulse train at 88 MHz which is synchronized to the electron

bunches in the storage ring to within 250 fs rms. The relative timing between the laser

and x-rays is adjusted using an electronic phase shifter in the synchrotron feedback

loop. The laser oscillator pulses are too weak (∼2 nJ/pulse) to excite large amplitude

motions in semiconductors and too frequent at the 88 MHz repetition rate to permit

sample cooling between laser pulses. Therefore, single oscillator pulses are electro-

optically selected by Pockels cells and amplified at a rate of 1 or 5 kHz up to energies

of 0.5−2.5 mJ/pulse using a regenerative chirped pulse laser amplifier (manufactured
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by Coherent, Inc). The synchronization between x-rays and laser pulse is done using

an antenna placed near the electron beam in the storage ring. This signal is amplified

and filtered to produce an RF signal that is mixed with the output of a photodiode in

the laser oscillator. The phase difference drives a piezo-mounted mirror to synchronize

the laser. Delays between the x-ray and laser are generated electronically by phase

shifting the electron beam RF.
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CHAPTER V

Time-Resolved X-ray Diffraction

X-ray techniques may be employed to directly probe displacements at the atomic

scale. In contrast, optical measurements are not directly sensitive to structural

changes since the typical atomic spacing is on the order of 1 Å. An optical pump,

X-ray probe technique is used to perform time resolved x-ray Bragg diffraction. At

the APS, the temporal resolution is dictated by the bunch length of the electrons

at ∼ 100 ps, averaging out any time-dependent effects below this limit. Given this

restriction, information can still be extracted on the dynamics of strain by measuring

rocking curves. Here, we present time resolved studies exploring strain generation

and thermalization in InSb and GaAs semiconductor crystals.

5.1 Time Resolved X-ray Rocking Curves

As a crystal is rotated with respect to an incident beam of x-rays, it will pass

through a geometry in which the three Laue conditions are simultaneously met and

diffracted radiation will add coherently. In the Bragg geometry, the Laue conditions

are satisfied by an angle θB, such that d = λ/2 sin(θB) where d is the distance between

lattice planes and λ is the wavelength of the incident radiation. Due to the spatial
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resolution of our experimental setup, Bragg peaks are best represented by a Gaussian

distribution,

I(θ) = I0e
− (θ−θB)2

2(δθ)2 + C (5.1)

where I0 and C are parameters defining the peak intensity and constant offset from

zero, and δθ is the standard deviation which can be related to the full width at half

maximum by FWHM = 2(δθ)
√

2 ln 2. Knowing the wavelength and experimentally

finding the Bragg angle, θB, the lattice parameter can be calculated.

There are several approaches to analyzing Bragg diffraction data. In this case,

the aggregate change in lattice parameter is examined where Bragg peaks are fit

to Gaussian distrobutions and the center position (centroid) is extracted. Using this

information, these studies track structural change, ∆d, in materials immediately after

laser excitation. The position, however, is not the only information accessible with a

rocking curve. The lineshape also contains information on the transient state of the

crystal. This is summarized in Figure 5.1, where a broadened rocking curve indicates

a portion of the probed crystal that has expanded or contracted in relation to the

rest of the material.

As discussed in Chapter II, there are several hypotheses available to describe the

dynamics of crystals under intense laser excitation. The Thomsen model states that

all energy absorbed into the lattice is in the form of heat in the material. With this

assumption, the temperature of a material can be measured by knowing the change

in center peak position of the Bragg diffraction and linear expansion coefficient, β.

For example, if a 1.0 mdeg (∆θ/θ = 0.0041%) shift in center peak position is

observed for InSb at a Bragg angle of 24.5 degrees, the lattice expansion is 0.057
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Figure 5.1: Rocking curves lineshape and position indicate the state of the lattice as
transient effects pass through the penetration depth of x-rays. In these
experiments, inhomogeneous spacing and lattice expansion are observed.
Image taken from [32].

mÅ (∆a/a = 0.0038%) and given a linear expansion coefficient β = 5.37× 10−6 K−1,

the surface temperature rise of 7.1 ◦C. For any angle shift, ∆θ, the temperature jump

can be calculated by

∆T =

(
1− sin(θB)

sin(θB + ∆θ)

)
1

β
. (5.2)

The non-thermal effects following laser absorption, however, have a finite lifetime

in the crystal. This approximation works well for long time periods after excitation

(greater than 1 ns), but for the initial non-thermal regime (up to 750 ps), this cal-

culation is not valid and underestimates the amount of stress in the lattice. In one

case, the material responds linearly to absorbed laser fluence, qualitatively similar to

the characteristics of the Thomsen model. In the other material, lattice response has

a nonlinear fluence relationship.
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To generate transient strain in these crystals, an 800 nm, 40 fs laser pulse illumi-

nated the crystals, each cut in the [100] orientation. The optical penetration depth

for InSb and GaAs are 0.1 µm and 1 µm respectively. The x-ray absorption depth

is given by the imaginary part of the x-ray scattering susceptibility for the incident

beam ψ0i. The absorption factor µ0 is given by µ0 = (2π|ψ0i|)/λ where the absorp-

tion length is a0 = µ−1
0 . For InSb and GaAs at 10 keV, the absorption length is 12

and 47 µm respectively. This value is only valid for cases when the Laue conditions

are not met and there is no diffraction taking place. That is, this is the kinematical

limit where the only attenuation effect is linear absorption and extinction (interaction

between incident and diffracted waves) are negligible.

In the dynamical limit, when the Laue conditions are met the extinction length

for a symmetric reflection is

LBraggext =
λ sin θB

π
√
|ψHψH̄ |

(5.3)

where ψH is the susceptibility of the diffracted beam and ψH̄ = (ψH)∗. The extinction

length is the depth inside the crystal at which the intensity is attenuated by a value

of e2. The susceptibilities of these materials at arbitrary energies and reflections can

be found using the computer program available in Appendix C.

The x-ray extinction depth for InSb and GaAs at 10 keV is 1.12 µm and 1.65 µm

respectively, calculated using Equation 5.3. This is the depth at which x-rays probe

into the sample at peak diffraction intensity, on top of the Bragg peak, when the

effect is entirely in the dynamical regime. The differences between optical and x-ray

extinction lengths allows for the distinction between the surface and bulk component

of the impulsive strain wave. That is, the x-rays are able to probe well outside the
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Figure 5.2: Rocking curves are fit to Gaussian distributions to extract center positions
and standard deviations (FWHM) values. A disturbed (expanded) lattice
is the result of ultrafast excitation (blue) compared to the equilibrium
lattice (red).

penetration depth of the laser into the unperturbed crystal layers after excitation.

The symmetric (400) reflections of InSb and GaAs were observed, chosen since it

is a strong reflection of zinc-blende structures. In each experiment data was collected

with 10 keV x-rays and a spectral bandwidth of ∼ 1 eV.

5.2 InSb Results

Rocking curves were produced with a pump-probe delay of 0 to 2.5 ns at ab-

sorbed fluences of 0.24 to 1.35 mJ/cm2. At each time point, the rocking curve is fit

to a Gaussian and the centroid extracted (see Figure 5.2). As the laser fluence is

increased, the rocking curves are deformed with additional diffracted intensity on the

low angle side of the peaks. This corresponds with an inhomogeneous lattice spac-
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ing through the penetration depth of the x-rays. Extinction (destructive interference

between incident and diffracted waves in the crystal) also plays a large role in the

(400) reflection, further distorting the diffraction peak shape. At long time scales,

the rocking curves remain significantly broadened indicating a persistent strain in

the crystal. This is likely a result of thermal effects since heat takes a significant

amount of time (hundreds of nanoseconds) to diffuse out of the extinction depth of

the x-rays. Figure 5.3 shows rocking curves at 400 ps after laser excitation for a range

of fluences. As the absorbed energy is increased, the low angle sidebands broaden

and peak intensity decreases.

In order to determine whether the strain is induced thermally or electronicly, the

centroid and full widths at half maximum of each rocking curve at each time point

and each fluence are plotted in Figure 5.4 and Figure 5.5. By taking the centroid of

the gaussian fit to a rocking curve, the average strain over the extinction depth of

the x-rays is calculated. For InSb, the peak strain occurs at 400 ps, where the crystal

quickly recovers to an equilibrium or quasi-steady-state lattice alignment. After 1 ns

the rocking curve does not significantly change centroid position, signifying that the

impulsive strain wave must be completely outside the probing depth of the x-rays,

leaving behind only a thermally excited lattice. The width of the rocking curve gives

an estimation on all parts of the extinction depth are thermalizing.

A measure of the full width at half maximum for each rocking curve is given

in Figure 5.5. The InSb rocking curve width increases by nearly a factor of two in

200 ps, indicating that the lattice at the surface has expanded tremendously while

the material deeper into the crystal remains unaltered. As the wave propagates and

thermal energy diffuses, the width equilibrates with a 15% increase at the highest

fluence. The quick recovery is evidence of thermally driven strain. The traveling wave
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Figure 5.3: The lineshapes of InSb rocking curves significantly changes with absorbed
laser fluence. The rocking curve of the lowest fluence (a) at 0.24 mJ/cm2

begins to broaden as the fluence is incrementally increased to 0.46 (b),
0.74 (c), 1.05 (d), and 1.35 mJ/cm2 (e). Here, the rocking curves broaden,
shift, and decrease in amplitude denoting expansion and inhomogeneous
spacing in the lattice. Plots are shown with a vertical displacement for
clarity.

67



Figure 5.4: As an acoustic disturbance propagates into the crystal, the lattice re-
sponds by expanding (negative peak shift), followed by a recovery to a
lattice at thermal equilibrium. Lattice expansion due to thermal contri-
butions and transient effects are linear with fluence in InSb. Note that the
lines connecting data points are there for visual aid and does not denote
a model or fit.

propagates outside of the extinction depth leaving behind a temperature gradient

which manifests as a slightly wider rocking curve. Here, there is no evidence that

electrons play a role in the dynamic response of InSb.

Both the thermal heating and impulsive strain appear to be linear through the

range of absorbed fluences. Additional data was collected suggesting that the peak

strain continues to be linear up to the damage threshold of InSb. Figure 5.6 shows

the peak strain (taken at 400 ps) and thermal strain (the average of centroid positions
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Figure 5.5: As the laser pulse is absorbed into the material and launches a bipolar
strain wave, the lattice experiences inhomogeneous spacing, dramatically
increasing the width of the Bragg peak.

from 1 to 2.5 ns) fitted with a linear slope versus laser fluence. The offset at time-

zero is due to the inability of the crystal to cool in the 1 ms before the next laser

pulse arrives. The rough curves are principally due to counting statistics and the

inaccuracies in fitting gaussians to the asymmetric rocking curves (see Figure 5.3).

The counting statistics of the x-ray detectors used in this experiment (Equa-

tion 4.5) propagates into a weighted Gaussian curve fit used in determining the center

of the rocking curve. The standard deviation of the fit parameter is extracted and

plotted in Figure 5.4 and 5.6. The lower slope in Figure 5.6 uses an average uncer-

tainty in the fit values between 1 − 2.5 ns while the uncertainty in the upper slope
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Figure 5.6: Peak (black) and thermal (blue) strain have a linear relationship with
absorbed laser fluence. A linear fit was performed to each set of data,
while a point at the origin was manually inserted.

are single values at 400 ps.

The linearity of InSb, with respect to both impulsive strain and thermal strain,

is due to the partition of energy between thermal and electronic strains. InSb is

frequently used as a near infrared detector since the band gap is only 0.17 eV, sensitive

to photons of wavelength up to ∼ 7.3 µm. When titanium sapphire laser light (1.55

eV) is absorbed, only a small fraction of the energy goes into promoting electrons,

where almost all is deposited into the lattice as heat. It would appear that this is

the physical limit of the Thomsen model with the vast majority of the energy is

bundled as a thermally induced propagating wave. A discussion of the comparison

and alterations to proposed models is given in Section 5.4. It is understood that the
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Figure 5.7: GaAs rocking curve for time-zero (solid with dot), 200 ps (dashed), and
400 ps (solid) after laser excitation. These rocking curves shift and
broaden as the strain wave affects the lattice spacing.

response to heat in a crystal to be very linear, given by Equation 5.2 and shown in

Figure 5.6.

5.3 GaAs Results

The sound speed, thermal expansion, and heat capacity are all very similar in

magnitude between GaAs and InSb, yet the effects of laser excitation on the two

materials are very different. This is at least partially due to the difference in band

gap, which for GaAs is 1.424 eV. Therefore, the majority of the absorbed laser energy

goes directly into producing electrons, leaving only a small remainder in the form of

heat.
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Figure 5.8: For low fluences, GaAs responses to laser-induced strain similar to InSb.
As the crystal absorbs more energy, the response to the impulsive strain
saturates, no longer responding in the linear manner seen in the low flu-
ence case.

The GaAs rocking curve data again shows a centroid shift to the left indicating

expansion of the lattice while also showing significant broadening of the lineshape as

the impulsive strain wave moves through the crystal (see Figure 5.7). These rocking

curves are exceptionally smooth due to the 1024 averages done in proportional mode,

which is a great improvement over the InSb data set of highly distorted lineshapes

taken with single photon counting detectors (Figure 5.3).

With this quality of data, Gaussian curve fitting produces very small confidence

intervals. As well, since the measured uncertainty in the amplitude of diffracted

intensity is a constant value of ∼ 1 mV, further reducing the relative propagated error.

72



Figure 5.9: Time resolved changes in the rocking curve width of GaAs indicates a
significant contribution from the energetic electrons created by the ab-
sorption of a laser pulse. The slow decay of the width shows that the
lattice spacing recovers only after the electrons have recombined or dif-
fused further than the extinction depth of the x-rays.

The reward for careful experimental setup and choice of detectors is summarized

in Figure 5.8 where the centroid shift is measured with high confidence and high

precision.

At low fluences (less than 0.5 mJ/cm2), GaAs responds nearly identically to InSb.

A large leftward peak shift begins the lattice reaction, cresting at 400 ps after excita-

tion, with a quick recovery to a small, thermal offset. As the fluence is raised above

0.5 mJ/cm2, however, the strain due to the impulsive acoustic wave is highly atten-

uated. At ∼ 400 ps, the lattice response saturates to increasing absorbed energy in

the semiconductor. In spite of the nonlinear response to impulsive strain, the thermal
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Figure 5.10: Thermal strain (blue) has a weak linear relationship with absorbed en-
ergy while the maximum peak shift (black) is nonlinear with laser flu-
ence. A linear fit is performed on the data from the thermal regime with
light agreement. Inset taken from [7] where the blue curve is a numerical
model. It can be seen that the strain transition happens near the same
fluence level in both cases.

regime continues to have a loosely linear response to fluence.

The rocking curve widths of GaAs in Figure 5.9 show a quick increase, qualita-

tively identical to that of InSb indicating that the lattice is thrown into a state of

inhomogeneity. The recovery of the width, however, is quite different. Instead of re-

covering to within 15% of the original width, a gradient in the lattice spacing persists,

taking nearly 1.5 ns to return to ∼ 15% where it took InSb a mere 200 ps for the

highest fluence case. The additional time necessary to bring the lattice spacing into

equilibrium is driven by hot electrons interacting with and diffusing into the crystal.

In Figure 5.10, the maximum Bragg peak deflection is shown to be nonlinear with
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respect to absorbed fluence. The abrupt change in the trend of peak shift (near 0.5

mJ/cm2) has been observed in previous time-resolved strain experiments with nearly

this transition threshold (see inset) [7].

GaAs is also a saturable absorber where the penetration depth is a function of

the laser intensity. A possible explanation for the high fluence cases is that excited

electrons are generated deeper than 1 µm in the crystal. If carriers are located farther

into the crystal, this would keep the lattice strained for a significant amount of time

since the recombination rate is relatively small and the lifetime of electrons in the

material is ∼ 1 ns.

5.4 Comparison with Models

Due to the majority of deposited energy being partitioned into thermal strain

and the linear response in peak lattice distortion in InSb, the thermoelastic Thomsen

model is an appropriate candidate. The Thomsen mode produces a linear peak strain

(maximum distortion) and thermal strain (> 2 ns after excitation) response in diffrac-

tion simulations. Despite an underestimation in the impulsive strain response, the

model shows qualitative agreement with the results obtained experimentally for InSb.

In Figure 5.11, the diffraction simulation shows the equivalent plot to Figure 5.6 for

InSb, highlighting the linearity of the model. The ratio between the two slopes do not

correspond quantitatively with the observed lattice motions, but the general trend is

consistent with data and physical intuition.

The Thomsen model roughly underestimates the strength of the acoustic pulse by

a factor of 1.5. This may be attributed to the omission of electron contributions in

the impulsive wave. By changing the acoustic pulse amplitude — creating a constant

thermal profile at the surface with a different amplitude than the traveling pulse —
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Figure 5.11: The Thomsen model shows peak strain and heating has a linear depen-
dence with the amount of strain in the crystal. With InSb, the strain is
directly related to the amount of absorbed energy. Although the ratio
of the slopes contrast that of InSb data in Figure 5.6, the two are linear
and represent the scalability of lattice response to absorbed energy.
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Figure 5.12: Thomsen model matched in the thermal regime to InSb data at 0.24
mJ/cm2. The thermoelastic strain underestimates the contribution of
non-thermal effects in the impulsive strain wave.

increases the peak strain response but fails to fully account for the magnitude of the

impulsive component. Figure 5.12 shows the original, symmetric, Thomsen model

with InSb data for the lowest fluence case. Since the Thomsen strain model is an

analytic solution, numerical stability is not a problem. At high strain amplitudes,

however, the leading edge of the bipolar strain is negative and results in a positive

centroid shift. These high magnitudes of strain (∼ 0.1%) lead to highly distorted and

irregular diffraction patterns where a Gaussian approximation is no longer valid. For

these cases, a center of mass analysis, is done to extract the center of the Bragg peak:

Center of Mass =

∑
Aiθi∑
Ai

(5.4)
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Figure 5.13: Time resolved centroid shifts calculated for GaAs with Auger recombi-
nation, electron diffusion, and thermal diffusion included shows a non-
linear relation to fluence. Each plot is a even step size in fluence, and
clearly shows the peak strain at a higher rate of saturation compared to
the long-time condition. The ripple structure in the curves originate in
the computation of the strain. To directly compare to data, the curves
would be convoluted with a 100 ps gaussian, equivalent to the temporal
resolution at the APS.

where Ai is the amplitude of the diffraction pattern in the ith column.

Qualitatively, the low fluence cases of GaAs are similar to that of any data set for

InSb. Within the first nanosecond, the acoustic pulse disturbs the lattice producing a

large shift in diffraction angle. Only thermal effects are detectable after the acoustic

wave exists the x-ray extinction depth. The Thomsen model for GaAs, interestingly,

appears to have similar characteristics to the high fluence data of Figure 5.8. This

analysis, however, uses an inaccurate assumption that the highly energetic electrons

in GaAs linearly couple with the lattice to produce strain. As shown in Equation 2.4,
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the Auger recombination has a cubic dependence on the density and since the Auger

recombination coefficient in GaAs is large, the resulting electron mean lifetime is ∼

1 ns.

As such, a different model is necessary to handle these nonlinear features. To

accomplish this, the electron and thermal diffusion equations,

∂n

∂t
= De

∂2n

∂z2
− An3 and

∂T

∂t
= Dt

∂2T

∂z2
− An3Eg

C
, (5.5)

must be solved for all time and space within the confines of the simulation. Finally,

the strain is propagated through the crystal depth using a one-dimensional wave

equation,

∂2u

∂t2
= v2∂

2u

∂z2
. (5.6)

Since this process involves taking the derivatives of several functions, the step size

and initial parameterization is important. This method produces strain profiles with

similar characteristics to a driven traveling wave and produces centroid diffraction

shifts better resembling data seen in InSb or the low fluence cases of GaAs. These

simulations involve a nonlinear dependence on fluence where the lattice response

begins to saturate at higher absorbed energies (see Figure 5.13). The nonlinearities,

without the addition of a free parameter in the penetration depth, are naturally

incorporated in this model. A plot of the largest lattice deflection and amount of

strain, ∆d/d, is given in Figure 5.14 which shows the nonlinear relation to strain and

the approximately linear strain in the thermal region (> 2 ns). The transition into a

nonlinear regime occurs around 0.4 mdeg, near where the GaAs data begins to behave

nonlinearly. This imparts confidence into the theory behind this strain profile that
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Figure 5.14: A nonlinear strain model shows that centroid shift due to heating has a
rough linear dependence while the peak strain behaves nonlinear, even
at low strain amplitudes. The trend of this simulation is similar to the
data collected for GaAs and shown in Figure 5.10.

Auger recombination and electron diffusion must be contributing to the nonlinear

response.
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CHAPTER VI

Conclusions and Outlook

This thesis presents a study of strain and lattice dynamics in photo-excited InSb

and GaAs. The techniques used to produce the high quality data can be extended

to any time resolved diffraction experiment from any strong reflection. Additionally,

a computer program was developed to calculate high resolution, benchmarked Bragg

diffraction peaks for a strained crystal.

The diffraction data for InSb has a linear dependence on absorbed laser fluence.

This is due to a partitioning of energy such that the majority transfers into the

lattice as heat within the time resolution of these experiments. As the crystal heats,

the lattice responds with linear expansion and generates a traveling acoustic impulsive

wave. Future work will seeks to achieve quantitative agreement between measured

and modeled strain. We also anticipate that the next generation of x-ray sources with

better temporal resolution may be able to capture transient nonlinearities in InSb.

For GaAs, a linear response to absorbed fluence was observed at long times follow-

ing laser excitation, however, while the impulsive strain remained within the probe

depth of the x-rays, the response is nonlinear. This can have several explanations.

Our model shows qualitatively that strain saturation and recovery may be explained

by a coupled charge and temperature distribution which is continuing to evolve at
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the time and length scales accessible by this experiment. Other alternative explana-

tions may also be tested against the high-quality time-resolved diffraction data and

strain analysis code developed for this thesis. Such nonlinear strain generation pro-

cesses may include free carrier absorption, carrier-carrier scattering, and saturable

absorption.

In conclusion, this thesis has shown for the first time that the approach to thermal

equilibrium in a laser-excited semiconductor does not necessarily follow a linear stress-

strain relationship at short timescales, even far away from phase transitions. This

opens up the possibility of real-time manipulations of non-equilibrium states in these

systems and motivates a more nuanced understanding of this common and important

process.
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APPENDIX A

Physical Properties of GaAs and InSb

Symbol Parameter GaAs InSb Unit
θB Bragg Angle [400], 10 keV 23.18 28.89 deg
R Reflectivity 0.039 0.144 Unitless
β Linear Expansion 5.73× 10−6 5.37× 10−6 1/K
A Laser Spot Size 38.30 27.82 mm2

n Index of Refraction 3.644 + i0.089 4.4 + i0.637 Unitless
ζ, d Absorption Length 1 0.1 µm
C Heat Capacity 1.096× 107 7.203× 106 eV/K/µm3

ν Poisson’s Ratio 0.31 0.35 Unitless
v Sound Speed 4.73 3.4 µm/ns
ρ Density 5.32× 103 5.77× 103 kg/m3

B Bulk Modulus (100) 75.3× 109 40.9× 109 Pa
Eg Band Gap 1.424 0.17 eV
αt Thermal Expansion 5.73× 10−6 5.37× 10−6 1/K
αe Electronic Strain Coupling 2.019× 10−11 2.195× 10−11 µm3

Dt Temperature Diffusion 0.031 0.016 µm2/ns
De Electron Diffusion 10 200 µm2/ns
A Auger Recombination 1× 10−15 5× 10−11 µm6/ns

Table A.1: Properties of GaAs and InSb at 300 K. Needed for calculations of Thomsen
et al. and Decamp et al. strain models.
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APPENDIX B

Ztec Oscilloscope Boot Protocol

Instructions for operating the Ztec Oscilloscope ZT4212 at 7IC-C.

Compiled by Eric Landahl, Dohn Arms, and Jackson Williams

For acquiring APD waveforms in proportional mode, the following should be noted:

APD output into Channel 1.
APD control voltage: 7.75 V.
APD high voltage: 210 V.
Detector is linear up to 100 mV.
Linearity can be corrected up to ∼ 150 mV.
Laser trigger (Pockel’s cell signal) to External Trigger.
An external delay box is helpful for moving this trigger to the correct bunch.
User Array Calcs need to be set up properly:
→ Array Variables: ztec:Inp1ScaledWave NPP NMS, Calculation: -aa[00,500] -
amin(nsmoo(-aa[95,120],5)).
ScanH needs to be set up properly:
→ DetTriggers: ztec:OpInitiate, Detectors: ztec:Inp1ScaledWave, Settling: 1.5 s.

For the initial boot running from bantu (use current IP address):

export EPICS CA ADDR LIST = 164.54.107.56
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Check if oscilloscope is communicating:

caget ztec:UtilID

Operational setup for acquiring APD waveforms in proportional mode:

caput ztec:Inp1Wave.SCAN 7

caput ztec:Inp1ScaledWave.SCAN 7

caput ztec:Inp1ScaledTime.SCAN 7

caput ztec:setInp1Enable 1

caput ztec:setInp1Imped 50

caput ztec:setInp1Couple DC

caput ztec:setInp1Range 0.25

caput ztec:setTrigSource EXT

caput ztec:setTrigLevExt -0.5

caput ztec:setTrigSlope NEG

caput ztec:setTrigImpedExt 50

caput ztec:setTrigMode NORM

caput ztec:setTrigType EDGE

caput ztec:setAcqType AVER

caput ztec:setAcqCount 1024

caput ztec:setHorzOffset 0

caput ztec:setHorzTime 1e-6

caput ztec:setHorzPoints 512
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APPENDIX C

Matlab Code

C.1 Strained Crystal Dynamical Diffraction Routines

C.1.1 Main Routine for Dynamical Diffraction

1 %% Main Routine for Dynamical Diffraction Simulation
2 % X top.m
3 % Written by G.J. Williams
4 % Last Updated 6/7/2010
5 clear all; tic
6 %Choose initial parameters:
7 crystal = 1; % GaAs = 1, InSb = 2, Ge = 3
8 E = 10000; % Energy currently fixed at 10 keV
9 reflect = [4 0 0]; % Reflection fixed at [4 0 0]

10 T = 300; % Temperature (K)
11

12 % Find Atomic Form Factors, lattice parameters, reflection parameters:
13 [F 0,F hkl,a,lambda,thetaB] = formf(reflect,crystal,E,T);
14 % Calculate psi 0 and psi H (complex crystal susceptibilities):
15 [psi 0,psi H] = X0H(F 0,F hkl,a,lambda);
16

17 t f = .5; % final time (must be in ns)
18 E p = 1.55; % photon energy in eV
19 F = 4.5e−2; % Fluence in mJ/cmˆ2
20 fluence = F*6.242*10ˆ7/E p; % Fluence in photons/micronˆ2
21

22 [s,x,t] = FStrain(crystal,fluence,t f); % Strain calculation
23
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24 centshift = zeros(length(t),1); % Prealocate space for centshift
25 for n = 1:length(t); % Time interation loop
26

27 % Run the dynamical diffraction code for each time point
28 [cent,dtheta] = Wie(psi 0,psi H,thetaB,lambda,s(:,n),x);
29 if(n == 1); % Reference point to measure change in centroid
30 cent0 = cent; % Initial (t = 0) centroid position
31 end
32 centshift(n) = cent − cent0; % Calculate centroid shift
33 end
34 A1 = smooth(t,centshift); % Smoothing Function (running average)
35 if(crystal == 1); % Load Data for comparison
36 zzz = load('GaAs all.txt'); % GaAs Data
37 elseif(crystal == 2);
38 zzz = load('InSb all.txt'); % InSb Data
39 end
40

41 figure(6); clf; hold on
42 plot(t,A1,'b');
43 plot(t,centshift,'g');
44 errorbar(zzz(:,1),zzz(:,2),zzz(:,3),'k.');
45 errorbar(zzz(:,1),zzz(:,4),zzz(:,5),'b.');
46 errorbar(zzz(:,1),zzz(:,6),zzz(:,7),'r.');
47 errorbar(zzz(:,1),zzz(:,8),zzz(:,9),'c.');
48 errorbar(zzz(:,1),zzz(:,10),zzz(:,11),'g.');
49 xlabel('Time (ns)');
50 ylabel('Centroid Shift (mdeg)');
51

52 t3 = toc;

C.1.2 Structure Factor

1 %% Subroutine for dynamical diffraction simulation
2 % Calculates atomic form factors
3 % Written by G.J. Williams
4 % Last Updated 6/7/2010
5 function [F 0,F hkl,a,lambda,thetaB] = formf(reflect,crystal,E,T)
6 warning off all;
7

8 % Choose which crystal to use, load form factor data and lattice parameter
9 if(crystal == 1);

10 aa = load('Ga.txt'); bb = load('As.txt'); a = 5.65325;
11 elseif(crystal == 2);
12 aa = load('In.txt'); bb = load('Sb.txt'); a = 6.4789;
13 elseif(crystal == 3);
14 aa = load('Ge.txt.'); bb = 0; a = 5.64613;
15 elseif(crystal == 4);
16 aa = load('Zn.txt'); bb = load('S.txt'); a = 5.420;

88



17 elseif(crystal == 5);
18 aa = load('C.txt.'); bb = 0; a = 3.56683;
19 elseif(crystal == 6);
20 aa = load('Si.txt'); bb = 0; a = 5.43095;
21 else
22 fprintf('Warning: No Form Factor Could Be Calculated \n');
23 end
24

25 % Constants:
26 i = sqrt(−1);
27 planck = 4.13566733e−15; % in ev*s
28 c = 299792458e10; % in Angs/s
29 % Bragg's law calculations:
30 h = reflect(1); k = reflect(2); l = reflect(3);
31 d = a/sqrt(hˆ2 + kˆ2 + lˆ2);
32 Q = 2*pi/d;
33 lambda = planck*c/E;
34 theta2 = asin(lambda/(2*d))*2 * 180/pi; % In degrees
35 thetaB = theta2/2 * pi/180; % In radians
36

37 % Load data for f' and f'' correction terms
38 fpp data = aa(1:length(aa),3);
39 fp data = aa(1:length(aa),2);
40 E1 data = aa(1:length(aa),1);
41 % Interpolate data at every 1 eV delineation
42 E1 = (min(E1 data):1:max(E1 data));
43 fpZ = interp1(E1 data,fp data,E1);
44 fpp = interp1(E1 data,fpp data,E1);
45 % Making sure the energy corresponds to the correct interpolated element
46 fp aa = fpZ(E − min(E1) + 1);
47 fpp aa = fpp(E − min(E1) + 1);
48

49 %% Finding f0. Cromer−Mann coefficients taken from ruppweb, differs
50 % slightly from Cromer, DT and Mann, JB (Acta. Cryst. A., 1968)
51 % (http://www.ruppweb.org/new comp/scattering factors.htm)
52 if(crystal == 1) %Ga
53 a1 = 15.235; a2 = 6.701; a3 = 4.359; a4 = 2.962;
54 b1 = 3.067; b2 = 0.241; b3 = 10.781;b4 = 61.414;
55 c = 1.719;
56 elseif(crystal == 2) % In
57 a1 = 19.162; a2 = 18.560; a3 = 4.295; a4 = 2.040;
58 b1 = 0.548; b2 = 6.378; b3 = 25.850; b4 = 92.803;
59 c = 4.939;
60 elseif(crystal == 3) %Ge
61 a1 = 16.082; a2= 6.375; a3= 3.707; a4 = 3.683;
62 b1 = 2.851; b2= 0.252; b3= 11.447; b4= 54.763;
63 c = 2.131;
64 elseif(crystal == 4) %Zn
65 a1 = 14.074; a2= 7.032; a3= 5.165; a4= 2.410;
66 b1 = 3.266; b2= 0.233; b3= 10.316; b4 = 58.710;
67 c = 1.304;
68 elseif(crystal == 5) % C
69 a1 = 2.310; a2=1.020; a3= 1.589; a4 =0.865;
70 b1 = 20.844; b2= 10.208; b3= 0.569; b4= 51.651;
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71 c = 0.216;
72 elseif(crystal == 6) % Si
73 a1 = 6.292; a2 = 3.035; a3= 1.989; a4=1.541;
74 b1 = 2.439; b2 = 32.334; b3=0.678; b4= 81.694;
75 c = 1.141;
76 else
77 a1 = 0; a2 = 0; a3 = 0; a4 = 0;
78 b1 = 0; b2 = 0; b3 = 0; b4 = 0;
79 c = 0;
80 end
81 %Assimilate into: f0 = sum a i*exp(b i*(Q/4*pi)ˆ2) + c:
82 f0 aa = c + a1*exp(−b1*(Q/(4*pi))ˆ2) + a2*exp(−b2*(Q/(4*pi))ˆ2)
83 + a3*exp(−b3*(Q/(4*pi))ˆ2) + a4*exp(−b4*(Q/(4*pi))ˆ2);
84 % Finding incident form factor:
85 f0 aa0 = c + a1 + a2 + a3 + a4;
86

87 % Data for the second atom in the crystal:
88 if(bb == 0);
89 f0 bb = f0 aa; fp bb = fp aa; f0 bb0 = f0 aa0; fpp bb = fpp aa;
90 elseif(bb 6=0);
91 % Load data
92 fpp data = bb(1:length(bb),3);
93 fp data = bb(1:length(bb),2);
94 E1 data = bb(1:length(bb),1);
95 % Interpolate data
96 E1 = (min(E1 data):1:max(E1 data));
97 fpZ = interp1(E1 data,fp data,E1);
98 fpp = interp1(E1 data,fpp data,E1);
99 fp bb = fpZ(E − min(E1) + 1);

100 fpp bb = fpp(E − min(E1) + 1);
101 if(crystal == 1)
102 a1 = 16.672; a2 = 6.070; a3 = 3.431; a4 = 4.278;
103 b1 = 2.635; b2 = 0.265; b3 = 12.948;b4 = 47.797;
104 c = 2.531;
105 elseif(crystal == 2)
106 a1 = 19.642; a2 = 19.045; a3 = 5.037; a4 = 2.683;
107 b1 = 5.303; b2 = 0.461; b3 = 27.907; b4 = 75.283;
108 c = 4.591;
109 elseif(crystal == 4)
110 a1 = 6.905; a2= 5.203; a3= 1.438; a4= 1.586;
111 b1 = 1.468; b2= 22.215; b3= 0.254; b4= 56.172;
112 c = 0.867;
113 else
114 % keep all a i,b i,c constants the same
115 end
116 % f0 = sum(a i * exp(−b i * Qˆ2)) + c
117 f0 bb = c + a1*exp(−b1*(Q/(4*pi))ˆ2) + a2*exp(−b2*(Q/(4*pi))ˆ2) ...
118 + a3*exp(−b3*(Q/(4*pi))ˆ2) + a4*exp(−b4*(Q/(4*pi))ˆ2);
119 % Incident scattering power
120 f0 bb0 = c + a1 + a2 + a3 + a4;
121 end
122 %% Compiling the Atomic Form Factors
123 % Debye−Waller Factor [M in M sb] = debye(crystal,temperature)
124 [u2 aa u2 bb] = debye(2,T);

90



125 M aa = 8*piˆ2/3*(sin(thetaB)/lambda)ˆ2*(u2 aa); %
126 M bb = 8*piˆ2/3*(sin(thetaB)/lambda)ˆ2*(u2 bb); %
127 % Atomic form factor:
128 f aa = (f0 aa + fp aa + i*fpp aa)*exp(−M aa);
129 f bb = (f0 bb + fp bb + i*fpp bb)*exp(−M bb);
130 % Atomic form factor for reflection [0 0 0], needed for F 0
131 f aa0 = f0 aa0 + fp aa + i*fpp aa; % −− these also seem reasonable
132 f bb0 = f0 bb0 + fp bb + i*fpp bb;
133 % Full structure factor for the InSb crystal.
134 F 0 = 4*(f aa0 + f bb0);
135 F hkl = f aa*(1 + exp(pi*i*(h+k))+exp(pi*i*(h+l))+exp(pi*i*(k+l))) ...
136 +f bb*(exp(.5*pi*i*(h+k+l))+exp(.5*pi*i*(3*h+3*k+l)) ...
137 +exp(.5*pi*i*(3*h+k+3*l))+exp(.5*pi*i*(h+3*k+3*l)));
138 end

C.1.3 Calculating the Debye-Waller Coefficient

1 %% Subroutine for dynamical diffraction simulation
2 % debye.m
3 % Calculates Debye−Waller factors
4 % Written by G.J. Williams
5 % Last Updated 6/7/2010
6

7 function [M1,M2] = debye(crystal,T)
8

9 temp = [0.001 100 200 400 600 800 1000];
10 temperature = 1:1:1000;
11

12 if(crystal == 1); %GaAs
13 e1 = [1.858e−3 3.397e−3 6.038e−3 0.011658 0.017368 0.023101 0.028844];
14 e2 = [1.632e−3 2.949e−3 5.201e−3 0.010014 0.014909 0.019827 0.024754];
15 elseif(crystal == 2); %InSb
16 e1 = [1.958e−3 6.102e−3 0.011711 0.023163 0.034671 0.046194 0.057723];
17 e2 = [1.724e−3 5.274e−3 0.010085 0.019926 0.029821 0.039728 0.049642];
18 elseif(crystal == 3); %Ge − both atoms in the structure are the same
19 e1 = [2.471e−3 3.196e−3 4.865e−3 8.772e−3 0.01287 0.017022 0.021198];
20 e2 = [2.471e−3 3.196e−3 4.865e−3 8.772e−3 0.01287 0.017022 0.021198];
21 elseif(crystal == 4); %ZnS
22 e1 = [2.229e−3 3.942e−3 7.046e−3 0.013641 0.020335 0.027053 0.033781];
23 e2 = [2.425e−3 3.504e−3 5.565e−3 0.010258 0.015132 0.020054 0.024997];
24 elseif(crystal == 5); % C
25 e1 = [1.611e−3 1.626e−3 1.690e−3 1.986e−3 2.436e−3 2.962e−3 3.529e−3];
26 e2 = [1.611e−3 1.626e−3 1.690e−3 1.986e−3 2.436e−3 2.962e−3 3.529e−3];
27 elseif(crystal == 6); % Si
28 e1 = [1.718e−3 3.191e−3 5.665e−3 0.01093 0.01628 0.021653 0.027035];
29 e2 = [1.718e−3 3.191e−3 5.665e−3 0.01093 0.01628 0.021653 0.027035];
30 else
31 fprintf('Warning: Debye Waller Factor could not be calculated \n');
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32 e1 = [0 0 0 0 0 0 0];
33 e2 = [0 0 0 0 0 0 0];
34 end
35 debye1 = interp1(temp,e1,temperature);
36 debye2 = interp1(temp,e2,temperature);
37

38 M1 = debye1(T);
39 M2 = debye2(T);
40 end

C.1.4 Determining ψ0,H

1 %% Subroutine for dynamical diffraction simulation
2 % X0H.m
3 % Calculates susceptibilities
4 % Written by G.J. Williams
5 % Last Updated 6/7/2010
6 function [psi 0,psi H] = X0H(F 0,F hkl,a,lambda)
7 a = a*10ˆ−10; % in meters
8 V = aˆ3; % Volume in mˆ3
9 e = 1.60217733*10ˆ−19; % in C

10 m = 9.1093897*10ˆ−31; % in kg
11 c = 299792458; % in m/s
12 e0 = 8.854187817*10ˆ−12; % F/m
13 lambda = lambda*10ˆ−10; % in meters
14 F 0H = F 0; % Undamaged structure factor
15 F H = F hkl; % Debye factor already taken care of.
16 % Structure parameter of incident wave
17 psi 0 = −(eˆ2/(m*cˆ2))*(lambdaˆ2/pi)*(F 0H/V)/(4*pi*e0);
18 % Structure parameter of diffracted wave
19 psi H = −(eˆ2/(m*cˆ2))*(lambdaˆ2/pi)*(F H/V)/(4*pi*e0);
20 end

C.1.5 Takagi-Taupin Rocking Curves

1 %% Subroutine for dynamical diffraction simulation
2 % Wie.m
3 % Calcualtes strained crystal diffraction peaks
4 % Written by G.J. Williams
5 % Last Updated 6/7/2010
6 % Everything in this program should be in SI units
7 function [cent,dtheta] = Wie(psi 0,psi H,thetaB,lambda,s,x)
8
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9 strain = flipud(s);
10 lambda = lambda*10ˆ−10;
11

12 psi 0r = real(psi 0); psi 0i = imag(psi 0);
13 psi Hr = real(psi H); psi Hi = imag(psi H);
14

15 angstep = 10ˆ−6; % Angular steps (keep fixed at 1 urad)
16 nmax = 300; % 300 angular steps
17 A00 = max(x)*10ˆ−6; % Size of crystal (depth) (
18 jmax = length(x); % 2000 depth steps
19 dstep = A00/(jmax − 1); % step size is 2.5 nm
20

21 pXtop = zeros(1,nmax); ptheta = zeros(1,nmax); % Prealocating Space
22

23 for n = 1:nmax % Angluar loop
24 % Calculate angluar range
25 theta = thetaB − 0.4*nmax*angstep + n*angstep ;
26 % Ratio of the deffracted/incident cosines
27 b = 1; % For symmetric Bragg reflections, b = 1
28 % Incident absorbtion parameter
29 g = ((1+b)*psi 0i)/(2*abs(psi Hr)*sqrt(b));
30 % Diffracted absorption parameter
31 k = psi Hi/psi Hr;
32 % Difrection of cosines
33 gamma 0 = cos(pi/2 − thetaB);
34 gamma H = cos(pi/2 − thetaB);
35

36 for j = 1:jmax % Depth loop
37 z = (A00 − (j)*dstep); % Iterating through the crystal depth
38

39 e1 = strain(j); % Import strain depth position
40 % For the first step, A01 is the infinite crystal solution
41 A01 = (A00)*(pi*abs(psi Hr))/(lambda*sqrt(gamma H*gamma 0));
42 % Normalizing iterative crystal depth
43 A = (pi*z*abs(psi Hr))/(lambda*sqrt(gamma H*gamma 0));
44 % Strain coefficient
45 c1 = 2*sin(2*thetaB)*tan(thetaB);
46

47 % Angle between the surface and reflecting plane is zero, c2 = 0
48 c2 = 0;
49 e2 = 0; % e2 set to 0 for consistency.
50 % Angle of reflection (independent variable)
51 alpha = −2*(theta − thetaB)*sin(2*thetaB) − (c1*e1 + c2*e2);
52 % Deviation from Bragg angle
53 y = ((1+b)*psi 0r − b*alpha)/(2*abs(psi Hr)*sqrt(b));
54

55 % Taking the square root of a complex number
56 r1 = abs(yˆ2 − gˆ2 + kˆ2 − 1); % APPENDIX FROM WIE et al.
57 r2 = 2*(y*g − k);
58 r = sqrt(r1ˆ2 + r2ˆ2);
59 s1 = sqrt((r+r1)/2);
60 s2 = sqrt((r−r1)/2);
61 q1 = sqrt(1 − kˆ2 + gˆ2);
62 q2 = k/g;
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63 i = sqrt(−1);
64 if(y ≤ − q1)
65 s = s1 + i*s2;
66 elseif(y ≤ q2) && (y ≥ −q1)
67 s = s2 + i*s1;
68 elseif(y ≤ q1) && (y ≥ q2)
69 s = −s2 + i*s1;
70 elseif(y ≥ q1);
71 s = −s1 + i*s2;
72 else
73 fprintf('Error found in taking the square root');
74 end
75 i = sqrt(−1);
76 B = −(1+i*k);
77 C = y + i*g;
78 X0 = −B/(C − s); % Zero−strain solution
79

80 if(j == 1)
81 Xj = X0; % Start with zero strain solution
82 A0 = A01; % Start with infinite depth
83 end
84

85 % Diffraction solution
86 Xj = (s*Xj + i*(B+C*Xj)*tan(s*(A − A0)))/(s − i*(C+B*Xj)*tan(s*(A − A0)));
87 A0 = A; % Update A0 as the previous A value
88 end
89

90 pXtop(n) = Xj; % Top layer soln vs theta
91 ptheta(n) = theta; % Theta for plotting
92

93 end
94 amp = conj(pXtop).*pXtop; % Total reflecting intensity
95 dtheta = (ptheta − thetaB)*180/pi*1000; % In mdeg
96

97 % Angular Convolution
98 width = 2.5; % Double Crystal curve FWHM of Diamond (111) in mdeg
99 c = width*1/(2*sqrt(2*log(2))); % Convert from FWHM to "tau"

100 a = dtheta; % Independent variable
101

102 b1 = 0;
103 G = exp(−((a−b1)).ˆ2/(2*cˆ2)); % Angular Gaussian to convolude
104 convamp = conv2(amp,G,'same'); % Convolution function
105 % Normalization value (same size as amp)
106 convamp = max(amp)/max(convamp)*convamp;
107

108 f = fittype('gauss1'); % Fitting a single gaussian to peak
109 ffit = fit(dtheta',convamp',f);
110 params = coeffvalues(ffit); % Extracting fit parameters
111 cent = params(2); % Extraction centroid positon
112 end
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C.1.6 Thomsen Strain Model for GaAs

1 %% strain.m
2 % Written by G. Jackson Williams 6/7/2010
3 % strainInSb.m creates the Thomsen strain for GaAs
4

5 function [strain] = strainGaAs(z,t,thetaB)
6 lambda = 800*10ˆ−9; % Center wavelength of laser (m)
7

8 % These numbers are for GaAs ONLY
9 H = 3.1894; % Width of beam (mm)

10 V = 4.7264/sin(thetaB); % Height of beam (mm) (adjusted for the angle)
11 A = H*V*10ˆ−6; % Area of beam spot (mˆ2)
12

13 RepRate = 1000; % Repetition Rate of the Laser (Hz)
14 P = 0.39; % Power (Watts)
15 Q = P/RepRate; % Energy of the pulse (J)
16

17 C = 1.739*10ˆ6; % Heat Capacity (J/mˆ3−K)
18 nu = 0.31; % Poison's Ratio (unitless)
19 Y = 75.3*10ˆ9; % Youngs Modulus in (100) direction(Pa)
20 rho = 5.317*10ˆ3; % Denisity (kg/mˆ3)
21 beta = 5.73*10ˆ−6; % Coefficient of Thermal Expansion (1/K)
22

23 P = 1; % Light is P polarization
24 S = 0;
25

26 n1 = 1; % Index of refaction of air
27 n = 3.664; % Index of Refraction n(Real) for GaAs
28 k = 0.089; % n(Imag) for GaAs
29 n2 = n + i*k; % Complex index of refraction for GaAs
30

31 % Finding the reflectation coefficient of light for GaAs
32 theta = (pi/2 − thetaB);
33 theta2 = asin(n1*sin(theta)/n2);
34 r p = (−n2*cos(theta) + n1*cos(theta2))/(n2*cos(theta) + n1*cos(theta2));
35 r s = −(n1*cos(theta) − n2*cos(theta2))/(n1*cos(theta) + n2*cos(theta2));
36

37 R p = conj(r p)*r p;
38 R s = conj(r s)*r s;
39 R = S*R s + P*R p; % Reflectivity coefficient of light
40

41 alpha = k*pi*4/lambda; % absorbtion coefficient
42 zeta = 1/alpha; % Penetration depth (700 nm)
43

44 v = sqrt(3*(1−nu)/(1+nu)*Y/rho); % Speed of Sound (100) (m/s)
45

46 strain = (1−R).*Q.*beta./(A.*zeta.*C).*(1+eta)./(1−eta).*(exp(−z./zeta)...
47 .*(1−0.5.*exp(−v.*t./zeta))−0.5.*exp(−abs(z−v.*t)./zeta).*(sign(z−v.*t)));
48 end
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C.1.7 Thomsen Strain Model for InSb

1 %% strainInSb.m
2 % Written by G. Jackson Williams 6/7/2010
3 % strainInSb.m creates the Thomsen strain for InSb
4

5 function [strain] = strainInSb(z,t,thetaB)
6 lambda = 800*10ˆ−9; % Center wavelength of laser (m)
7

8 % These numbers are for InSb ONLY
9 H = 4.2105; % Width of beam (mm)

10 V = 3.1924/sin(thetaB); % Height of beam (mm) (adjusted for the angle)
11 A = H*V*10ˆ−6; % Area of beam spot (mˆ2)
12

13 RepRate = 5000; % Repetition Rate of the Laser (Hz)
14 P = 0.39; % Power (Watts)
15 Q = P/RepRate; % Energy of the pulse (J)
16

17 C = 1.154*10ˆ5; % Specific Heat (J/mˆ3−K)
18 nu = 0.35; % Poison's Ratio (unitless)
19 Y = 40.9*10ˆ9; % Youngs Modulus for the (100) direction (Pa)
20 rho = 5.77*10ˆ3; % Denisity (kg/mˆ3)
21 beta = 5.37*10ˆ−6; % Coefficient of Thermal Expansion (1/K)
22

23 P = 1; % Light is P polarization
24 S = 0;
25

26 n1 = 1; % Index of refaction of air
27 n = 4.4; % Index of Refraction n(Real) for InSb
28 k = 0.63662; % n(Imag) for InSb
29 n2 = n + i*k; % Complex index of refraction for InSb
30

31 % Finding the reflectation coefficient of light for InSb
32 theta = (pi/2 − thetaB);
33 theta2 = asin(n1*sin(theta)/n2);
34 r p = (−n2*cos(theta) + n1*cos(theta2))/(n2*cos(theta) + n1*cos(theta2));
35 r s = −(n1*cos(theta) − n2*cos(theta2))/(n1*cos(theta) + n2*cos(theta2));
36

37 R p = conj(r p)*r p;
38 R s = conj(r s)*r s;
39 R = S*R s + P*R p; % Reflectivity coefficient of light
40

41 alpha = k*pi*4/lambda; % absorbtion coefficient
42 zeta = 1/alpha; % Penetration depth (100 nm)
43

44 v = sqrt(3*(1−nu)/(1+nu)*Y/rho); % speed of sound in the (100) direction
45

46 strain = (1−R).*Q.*beta./(A.*zeta.*C).*(1+eta)./(1−eta).*(exp(−z./zeta)...
47 .*(1−0.5.*exp(−v.*t./zeta))−0.5.*exp(−abs(z−v.*t)./zeta).*(sign(z−v.*t)));
48 end
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C.1.8 Asymmetric Thermoelastic Model for InSb

1 %% strainInSb1.m
2 % Written by G. Jackson Williams 6/7/2010
3 % Asymmetric Thomsen model strain using Auger and deformation potential
4

5 function [strain] = strainInSb1(z,t)
6 % z has units of meters, t has units of s, v has units of m/s
7 % Everything else is um, ns, eV, K
8 % Returns a matrix of strain elements for a particular time point.
9

10 fluence = 9e6; % Fluence (photons/umˆ2)
11

12 E p = 1.55; % Photon energy (eV)
13 E g = 0.17; % Bandgap (eV)
14 C = 7.203*10ˆ6; % Specific Heat (ev/K/umˆ3)
15 d = 0.1; % Pentration Depth (um)
16 d1 = d*10ˆ−6; % Pentration Depth (m)
17 v = 3.4*10ˆ3; % Speed of Sound (m/s)
18 alpha e = 2.195*10ˆ−11; % electronic coupling (umˆ3)
19 alpha t = 5.37*10ˆ−6; % Thermal expansion (1/K)
20

21 strain = alpha t.*(E p−E g).*fluence./C./d.*exp(−z./d1) − ...
22 alpha e.*fluence./d.*(1/2.*exp((−z−v.*t)./d1) + ...
23 1/2.*exp(−abs(z−v.*t)/d1).*sign(z−v.*t));
24 end
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C.2 Data Reduction and Analysis

C.2.1 Main Routine for GaAs Data Extraction

1 %% Angshift GaAs.m
2 % Written by G. Jackson Williams 9/1/2009
3 % Top routine to analyze a 2−D diffraction scan.
4

5 clear all;
6 format short g;
7 hmax = 6; % Number of waveplate points in the scan
8 tic % Start the timer for the program
9

10 for h = 1:hmax % For each waveplate scan, do a centroid analysis
11

12 [Dth,time,Etot,n,m] = chomplite GaAs(h);
13 if(h == 1); % 0.211 W
14 Dth1(1:n) = Dth;
15 E1(1:n) = Etot/2;
16 time1(1:n) = time;
17 elseif(h == 2); % 1.24 W
18 Dth2(1:n) = Dth;
19 E2(1:n) = Etot/2;
20 elseif(h == 3); % 0.678 W
21 Dth3(1:n) = Dth;
22 E3(1:n) = Etot/2;
23 elseif(h == 4); % 0.964 W
24 Dth4(1:n) = Dth;
25 E4(1:n) = Etot/2;
26 elseif(h == 5); % 0.082 W
27 Dth5(1:n) = Dth;
28 E5(1:n) = Etot/2;
29 else % 0.420 W
30 %−−−Experimental Problems occured on this run. Do not use in Analysis−−−
31 Dth6(1:n) = Dth;
32 E6(1:n) = Etot/2;
33 end
34 end
35

36 % Calculating the peak shift and residual heating of the crystal
37 % power = laser power meter readings (in W)
38 % strain = maximum centroid shift (in mdeg)
39 % heat = averaged data from 1.5 ns to the end of the data run
40 % Estrain = error associated with the strain measurment at particular time
41 % Eheat = error associated with heat measurement
42 power = [0;0.082;0.211;0.42;0.678;0.946;1.24];
43 strain = −1*[0;min(Dth5);min(Dth1);min(Dth6);min(Dth3);min(Dth4);min(Dth2)];
44 heat = −1*[0;mean(Dth5(15:n));mean(Dth1(15:n));mean(Dth6(15:n)); ...
45 mean(Dth3(15:n));mean(Dth4(15:n));mean(Dth2(15:n))];
46 Estrain = [0;E5(4);E1(4);E6(4);E3(4);E4(4);E2(4)];
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47 Eheat = [0;mean(E5(15:n));mean(E1(15:n));mean(E6(15:n));mean(E3(15:n)); ...
48 mean(E4(15:n));mean(E2(15:n))];
49

50 H = 3.1894*10ˆ−3; % Horizontal laser spot on sample
51 V = 4.7264*10ˆ−3/sin(23.178*pi/180); % Vertical laser spot on sample
52 Area = V*H; % Total beam spot
53 reprate = 1000; % Laser repitition rate
54 E = power./reprate; % Energy deposited on sample
55 R = .03887; % Reflectivity of S polarized light
56 Aflue = E./Area.*(1 − R)./10; % Absorbed laser fluence on sample
57

58 f = fittype('poly1'); % Fit heat strain to linear slope
59 ffit = fit(Aflue,heat,f);
60

61 f1 = strcat(num2str(Aflue(2)),' mJ/cmˆ2'); % Create strings for legend
62 f2 = strcat(num2str(Aflue(3)),' mJ/cmˆ2');
63 f3 = strcat(num2str(Aflue(4)),' mJ/cmˆ2');
64 f4 = strcat(num2str(Aflue(5)),' mJ/cmˆ2');
65 f5 = strcat(num2str(Aflue(6)),' mJ/cmˆ2');
66

67 % Plot centroid shift as a function of time for 5 fluences with error bars
68 figure(15); clf; hold on
69 errorbar(time2,Dth5,E5,'.k−'); % 0.082 W
70 errorbar(time1,Dth1,E1,'.b−'); % 0.211 W
71 % errorbar(time,Dth6,E6,'.m−'); % 0.420 W **** DO NOT USE ****
72 errorbar(time1,Dth3,E3,'.r−'); % 0.678 W
73 errorbar(time1,Dth4,E4,'.c−'); % 0.964 W
74 errorbar(time1,Dth2,E2,'.g−'); % 1.24 W
75 xlabel('Time (ns)');
76 ylabel('Peak Shift (mdeg)');
77 title('GaAs');
78 %legend({f1;f2;f3;f4;f5},'Location','SouthEast');
79 xlim([−0.3 3]);
80

81 % Plot peak strain and residual heat with error bars
82 figure(13); clf; hold on;
83 errorbar(Aflue,strain,Estrain,'k*');
84 errorbar(Aflue,heat,Eheat,'bo');
85 plot(ffit);
86 xlim([0 3.5]);
87 ylim([0 0.7]);
88 xlabel('Absorbed Fluence (mJ/cmˆ2)');
89 ylabel('Peak shift (mdeg)');
90 title('GaAs');
91 legend('Peak Strain','Long−time Heating','Location','NorthWest')
92

93 t = toc; % Stop the clock
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C.2.2 Extract Centroid Shifts for Each Fluence for GaAs

1 %% chomplite.m
2 % Written by G. Jackson Williams 9/1/2009
3

4 % This is a subroutine to a program takes a modified .mda file from any
5 % time resolved diffraction data and outputs peak shift vs time.
6 % This one is for GaAs data.
7

8 function [Dth,time,Etot,n,m] = chomplite GaAs(h)
9 % Load scans. These were done as individual rocking curve scans thru time

10 if(h == 1)
11 a = load('−ascii','7idc 0789.txt'); % n time points
12 m = 21; n = 31; % m angluar points
13 elseif(h == 2)
14 a = load('−ascii','7idc 0794.txt');
15 m = 41; n = 31;
16 elseif(h == 3)
17 a = load('−ascii','7idc 0792.txt');
18 m = 41; n = 31;
19 elseif(h == 4)
20 a = load('−ascii','7idc 0784.txt');
21 m = 41; n = 31;
22 elseif(h ==5)
23 a = load('−ascii','7idc 0787.txt');
24 m = 41; n = 31;
25 else
26 a = load('−ascii','7idc 0778 0780 0781.txt');
27 m = 41; n = 29;
28 end
29

30

31 for i = 1:n; % For a total of "n" time steps
32

33 if(i == 1) % "m" angular points. p is carried through
34 A = p + 1:p + m; % to index the entire scan file.
35 else
36 A = max(A)+1:max(A)+m;
37 end
38

39 lsroff = a(A,19); % APD data for Laser Off bucket
40 lsron = a(A,20); % APD data for Laser on bucket
41 angle = a(A,2); % Theta positioner
42 % ** lsroff, lsron data normalized by hand for top−up occurances. No need
43 % to normalize to upstream counting APD as it introduces more uncertainty
44 Eon = .001*max(lsron).*ones(1,length(angle));
45 Eoff = .001*max(lsroff).*ones(1,length(angle));
46

47 [outon] = gaussfit(angle,lsron,Eon);
48 [outoff] = gaussfit(angle,lsroff,Eoff);
49
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50 centeroff(:,i) = outoff(1); % Store centroid positions, error
51 Ecentoff(:,i) = outoff(2); % Can not easily preallocate −−> n changes
52

53 centeron(:,i) = outon(1);
54 Ecenton(:,i) = outon(2);
55

56 end
57 dtime = .1; % Each time step is 100 ps
58 time = dtime*(0:i−1); % Start time at t = 0
59

60 Dth = (centeron − centeroff)*1000; % Taking the peak shift, in mdeg
61 Etot = (Ecentoff + Ecenton)*1000; % Error in the peak shift, in mdeg
62 end

C.2.3 Main Routine for InSb Data Extraction

1 %% Angshift InSb.m
2 % Written by G. Jackson Williams 9/1/2009
3 % Top routine to analyze a 3−D diffraction scan.
4 %Runs through the 3−D scan of 7idc 0040.txt for InSb at different fluences
5 clear all;
6 format short g;
7

8 p = 0; % Initiating angular indexing
9 m = 81; % Number of angular points in scan

10 n = 26; % Number of time points in scan
11 hmax = 5; % Number of waveplate points in the scan
12 shift = zeros(hmax,n); % Prealocate space for shift matrix
13 tic % Start the timer for the program
14

15 % Calculating the peak shift and residual heating of the crystal
16 power = [0;0.39;0.74;1.20;1.71;2.20]; % Power meter reading (in W)
17 H = 4.2105*10ˆ−3; % Horizontal beam spot on sample (m)
18 thetaB = 28.89*pi/180; % Bragg angle (in radians)
19 V = 3.1924*10ˆ−3/sin(thetaB); % Vertiacal beam spot on sample (m)
20 Area = V*H; % Beam spot area
21 reprate = 5000; % Repetition rate of Laser (Hz) (approx)
22 E = power./reprate; % Energy delivered on the sample
23 R = .14368; % Reflectivity (S−polarized) of InSb
24 Aflue = E./Area.*(1 − R)./10; % Absorbed laser fluence on the sample
25

26 for h = 1:hmax % For each waveplate scan, do a centroid analysis
27 [Dth,time,p,Etot] = chomplite InSb(p,m,n);
28 shift(h,1:n) = Dth; % Store the centroid analysis array
29 E(h,1:n) = Etot/2; % Store error in centroid fit
30 end
31

32 % Split up shift matrix for ease of understanding
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33 % All arrays are in increasing order of absorbed fluence
34 % Dth(X) = centroid shift for fluence index
35 % E(X) = error in centroid shift for fluence index
36 Dth1 = shift(1,1:n); Dth2 = shift(2,1:n);
37 Dth3 = shift(3,1:n); Dth4 = shift(4,1:n); Dth5 = shift(5,1:n);
38 E1 = E(1,1:n); E2 = E(2,1:n); E3 = E(3,1:n); E4 = E(4,1:n); E5 = E(5,1:n);
39

40 f1 = strcat(num2str(Aflue(2)),' mJ/cmˆ2');
41 f2 = strcat(num2str(Aflue(3)),' mJ/cmˆ2');
42 f3 = strcat(num2str(Aflue(4)),' mJ/cmˆ2');
43 f4 = strcat(num2str(Aflue(5)),' mJ/cmˆ2');
44 f5 = strcat(num2str(Aflue(6)),' mJ/cmˆ2');
45

46 % Plot of the centroid shifts
47 figure(10); clf; hold on
48 errorbar(time,Dth1,E1,'.b−');
49 errorbar(time,Dth2,E2,'.g−');
50 errorbar(time,Dth3,E3,'.r−');
51 errorbar(time,Dth4,E4,'.c−');
52 errorbar(time,Dth5,E5,'.m−');
53 ylim([−2.2 0]);
54 xlabel('Time (ns)');
55 ylabel('Peak Shift (mdeg)');
56 title('InSb');
57 %legend(f1,f2,f3,f4,f5,'Location','SouthEast');
58

59 % Calculating the peak shift and residual heating of the crystal
60 % strain = maximum centroid shift (in mdeg)
61 % heat = averaged data from 1.5 ns to the end of the data run
62 % Estrain = error associated with the strain measurment at particular time
63 % Eheat = error associated with heat measurement
64 strain = −1*[0;min(Dth1);min(Dth2);min(Dth3);min(Dth4);min(Dth5)];
65 Estrain = [0;E1(6);E2(6);E3(6);E4(6);E5(6)];
66 heat = −1*[0;mean(Dth1(10:n));mean(Dth2(10:n));mean(Dth3(10:n)); ...
67 mean(Dth4(10:n));mean(Dth5(10:n))];
68 Eheat = [0;mean(E1(10:n));mean(E2(10:n));mean(E3(10:n));mean(E4(10:n)); ...
69 mean(E5(10:n))];
70

71 f = fittype('poly1'); % Fitting both heat and strain to linear slopes
72 ffit = fit(Aflue,heat,f);
73 ffit2 = fit(Aflue,strain,f);
74

75 % Plot peak, heat strain
76 figure(12); clf; hold on;
77 errorbar(Aflue,strain,Estrain,'k*');
78 errorbar(Aflue,heat,Eheat,'bo');
79 plot(ffit);
80 plot(ffit2);
81 xlabel('Absorbed Fluence (mJ/cmˆ2)');
82 ylabel('Peak shifts (mdeg)');
83 title('InSb');
84 legend('Peak Strain','Long−time Heating','Location','NorthWest')
85 ylim([0 2.2]); hold off
86 xlim([0 1.4]);
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87

88 t = toc; % Stop the clock

C.2.4 Extract Centroid Shifts for Each Fluence for InSb

1 %% chomplite InSb.m
2 % Written by G. Jackson Williams 9/1/2009
3 % This is a subroutine to a program takes a modified .mda file from any
4 % time resolved diffraction data and outputs peak shift vs time.
5

6 function [Dth,time,p,Etot] = chomplite InSb(p,m,n)
7

8 a = load('−ascii','7idc 0040.txt'); % Load InSb data
9 A = p + 1:p + m; % Initialize indexing parameter

10

11 [lsroff1,lsron1,Eoff1,Eon1] = deadtime(a);
12

13 centeroff = zeros(1,n); % Prealocate space for these arrays
14 Ecentoff = zeros(1,n);
15 centeron = zeros(1,n);
16 Ecenton = zeros(1,n);
17

18 for i = 1:n; % For a total of "n" time steps
19 if(i == 1) % For each time step, the angle index is updated
20 A = p + 1:p + m;
21 else
22 A = max(A)+1:max(A)+m;
23 end
24 % Detector data for each rocking curve scan:
25 lsroff = lsroff1(A); % APD Data from Laser Off bucket
26 lsron = lsron1(A); % APD Data from Laser On bucket
27 Eoff = Eoff1(A); % Counting statistics for off bucket
28 Eon = Eon1(A); % Counting statistics for off bucket
29

30 apdon = a(A,15); % Normalization APD Data for Laser On bucket
31 apdtot = a(A,14); % Normalization APD Data for Laser Off bucket
32 angle = a(A,2); % Angle Positioner
33

34 normon = lsroff.*apdtot./(48*apdon); % Normalize to upstream APD
35 normoff = lsron.*apdtot./(48*apdon); % To remove top−ups
36

37 [outon] = gaussfit(angle,normon,Eon); % Fit rocking curves to guassian
38 [outoff] = gaussfit(angle,normoff,Eoff);
39

40 centeroff(:,i) = outoff(1); % Extract Centroid
41 Ecentoff(:,i) = outoff(2); % and error in fit due to counting
42 % statistics and fit residuals
43 centeron(:,i) = outon(1); % for both lsr on and lsr off
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44 Ecenton(:,i) = outon(2);
45

46 end
47

48 Dth = (centeroff − centeron)*1000; % Taking the peak shift, in mdeg
49

50 dtime = .1; % Each time step is 100 ps
51 time = dtime*(0:i−1); % Start at t = 0
52 p = max(A); % keep file index to start at next 2−D scan
53 Etot = (Ecentoff+Ecenton)*1000; % Error in the peak shift, in mdeg
54 end
55

56 % Detector Definitions
57 % Column 8 Det 6 Lsr Rep Rate
58 % Column 9 Det 7 APD B tot NO
59 % Column 10 Det 8 APD B off YES lsroff
60 % Column 11 Det 9 APD B on YES lsron
61 % Column 12 Det 10 APD B off late NO
62 % Column 13 Det 11 APD B on late YES lsrlate
63 % Column 14 Det 12 APD A tot (normalization)
64 % Column 15 Det 13 APD A on (gated every bunch with P0 at 271 kHz)
65 % Column 16 Det 14 APD A late (gated every bunch with P0 at 271 kHz)

C.2.5 Deadtime Correction Subroutine

1 %% Program to correct for the deadtime of photon counting APDs
2 % Written by G. Jackson Williams
3 % circa 9/1/2009
4

5 function [lsroff1,lsron1,Eoff,Eon] = deadtime(a)
6 t = 1; % Counting time
7 T = 1./a(:,8); % Repitition Rate of the laser
8 lsroff = a(:,10); % N O (observed count rate)
9 lsron = a(:,11); % N O (observed count rate)

10 tau = 1./a(:,8); % Repetition rate of the laser
11 % Return corrected (true) count rate for entire data set−(fluence and angle)
12 lsroff1 = −(1./tau).*log(1 − lsroff.*tau);
13 lsron1 = −(1./tau).*log(1 − lsron.*tau);
14 % Return deadtime correction counting statistics
15 Eoff = 1./((1−T.*lsroff)).*sqrt(lsroff./t);
16 Eon = 1./((1−T.*lsron)).*sqrt(lsron./t);
17 end
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C.3 Dispersion Correction Terms ∆f ′ and ∆f ′′

Data taken from [19] or available on the web at
http://henke.lbl.gov/optical constants/asf.html

C.3.1 Indium

1 % Energy (eV) f' f''
2 1000.000 −9.620117 20.60602
3 1100.000 −8.054237 18.47271
4 1200.000 −7.008023 16.63640
5 1300.000 −6.270947 15.05404
6 1400.000 −5.770803 13.68025
7 1500.000 −5.439097 12.48567
8 1600.000 −5.212864 11.43919
9 1700.000 −5.076109 10.51707

10 1800.000 −5.081061 9.703634
11 1900.000 −5.118416 8.995317
12 2000.000 −5.143920 8.362679
13 2100.000 −5.204079 7.794830
14 2200.000 −5.294268 7.282991
15 2300.000 −5.415628 6.819891
16 2400.000 −5.558311 6.399615
17 2500.000 −5.725870 6.016752
18 2600.000 −5.918964 5.666907
19 2700.000 −6.180744 5.348144
20 2800.000 −6.431940 5.057722
21 2900.000 −6.747009 4.792847
22 3000.000 −7.077412 4.548751
23 3100.000 −7.458972 4.326771
24 3200.000 −7.910831 4.121375
25 3300.000 −8.461382 3.930896
26 3400.000 −9.162023 3.753936
27 3500.000 −10.11621 3.589182
28 3600.000 −11.60928 3.435501
29 3633.000 −12.36531 3.387042
30 3638.000 −12.50117 3.379793
31 3643.000 −12.64437 3.372568
32 3648.000 −12.79578 3.365368
33 3653.000 −12.95641 3.358191
34 3658.000 −13.12748 3.351039
35 3663.000 −13.31050 3.343911
36 3668.000 −13.50729 3.336806
37 3673.000 −13.72018 3.329725
38 3678.000 −13.95207 3.322668
39 3683.000 −14.20684 3.315634
40 3688.000 −14.48958 3.308623
41 3693.000 −14.80739 3.301635
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42 3698.000 −15.17043 3.294671
43 3700.000 −15.33152 3.291891
44 3703.000 −15.59412 3.287729
45 3708.000 −16.10328 3.280810
46 3713.000 −16.74225 3.273914
47 3718.000 −17.60205 3.267041
48 3723.000 −18.92500 3.260190
49 3728.000 −21.94412 3.253362
50 3733.000 −21.15192 11.04794
51 3738.000 −18.65468 11.01754
52 3743.000 −17.43659 10.98730
53 3748.000 −16.62749 10.95725
54 3753.000 −16.02358 10.92737
55 3758.000 −15.54389 10.89766
56 3763.000 −15.14781 10.86812
57 3768.000 −14.81213 10.83876
58 3773.000 −14.52228 10.80956
59 3778.000 −14.26855 10.78053
60 3783.000 −14.04416 10.75166
61 3788.000 −13.84414 10.72296
62 3793.000 −13.66484 10.69443
63 3798.000 −13.50342 10.66606
64 3800.000 −13.44335 10.65475
65 3803.000 −13.35770 10.63785
66 3808.000 −13.22596 10.60979
67 3813.000 −13.10684 10.58190
68 3818.000 −12.99924 10.55417
69 3823.000 −12.90230 10.52659
70 3828.000 −12.81532 10.49917
71 3841.000 −12.63241 10.42859
72 3846.000 −12.57788 10.40172
73 3851.000 −12.53192 10.37499
74 3856.000 −12.49459 10.34842
75 3861.000 −12.46603 10.32199
76 3866.000 −12.44654 10.29572
77 3871.000 −12.43659 10.26958
78 3876.000 −12.43685 10.24360
79 3881.000 −12.44824 10.21775
80 3886.000 −12.47201 10.19205
81 3891.000 −12.50989 10.16649
82 3896.000 −12.56427 10.14108
83 3900.000 −12.62188 10.12084
84 3901.000 −12.63853 10.11580
85 3906.000 −12.73760 10.09066
86 3911.000 −12.86905 10.06565
87 3916.000 −13.04523 10.04079
88 3921.000 −13.28822 10.01606
89 3926.000 −13.64383 9.991458
90 3931.000 −14.23485 9.966997
91 3936.000 −15.70340 9.942667
92 3941.000 −15.14090 13.78414
93 3946.000 −13.86299 13.74954
94 3951.000 −13.19963 13.71513
95 3956.000 −12.73658 13.68091
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96 3961.000 −12.37510 13.64688
97 3966.000 −12.07558 13.61304
98 3971.000 −11.81815 13.57939
99 3976.000 −11.59133 13.54593

100 3981.000 −11.38792 13.51265
101 3986.000 −11.20307 13.47956
102 3991.000 −11.03338 13.44664
103 3996.000 −10.87636 13.41391
104 4000.000 −10.75858 13.38786
105 4001.000 −10.73012 13.38136
106 4006.000 −10.59320 13.34899
107 4011.000 −10.46446 13.31679
108 4016.000 −10.34299 13.28478
109 4021.000 −10.22800 13.25293
110 4026.000 −10.11888 13.22126
111 4031.000 −10.01512 13.18976
112 4036.000 −9.916277 13.15844
113 4100.000 −8.972916 12.77208
114 4140.000 −8.616801 12.54372
115 4145.000 −8.584288 12.51585
116 4150.000 −8.554716 12.48812
117 4155.000 −8.528238 12.46054
118 4160.000 −8.505053 12.43311
119 4165.000 −8.485400 12.40582
120 4170.000 −8.469594 12.37867
121 4175.000 −8.458027 12.35166
122 4180.000 −8.451204 12.32480
123 4185.000 −8.449775 12.29807
124 4190.000 −8.454600 12.27148
125 4195.000 −8.466843 12.24503
126 4200.000 −8.488109 12.21872
127 4205.000 −8.520723 12.19254
128 4210.000 −8.568189 12.16650
129 4215.000 −8.636155 12.14060
130 4220.000 −8.734588 12.11483
131 4225.000 −8.883768 12.08919
132 4230.000 −9.136117 12.06368
133 4235.000 −9.734893 12.03830
134 4240.000 −9.689471 13.86571
135 4245.000 −8.994583 13.83905
136 4250.000 −8.647552 13.81252
137 4255.000 −8.404243 13.78612
138 4260.000 −8.211948 13.75986
139 4265.000 −8.050273 13.73372
140 4270.000 −7.909103 13.70771
141 4275.000 −7.782726 13.68183
142 4280.000 −7.667568 13.65607
143 4285.000 −7.561257 13.63045
144 4290.000 −7.462104 13.60494
145 4295.000 −7.368905 13.57957
146 4300.000 −7.280745 13.55431
147 4305.000 −7.196927 13.52918
148 4310.000 −7.116878 13.50417
149 4315.000 −7.040160 13.47928
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150 4320.000 −6.966408 13.45452
151 4325.000 −6.895326 13.42987
152 4330.000 −6.826648 13.40534
153 4335.000 −6.760167 13.38093
154 4400.000 −6.036684 13.07408
155 4500.000 −5.216025 12.63747
156 4600.000 −4.586904 12.23960
157 4700.000 −4.076517 11.87628
158 4800.000 −3.648225 11.54393
159 4900.000 −3.051923 11.21557
160 5000.000 −2.716684 10.88601
161 5100.000 −2.423279 10.57544
162 5200.000 −2.053329 10.26510
163 5300.000 −1.817399 9.965174
164 5400.000 −1.608070 9.678737
165 5500.000 −1.421609 9.404993
166 5600.000 −1.242030 9.141077
167 5700.000 −1.091969 8.887983
168 5800.000 −0.9573733 8.645290
169 5900.000 −0.8364584 8.412432
170 6000.000 −0.7276968 8.188873
171 6100.000 −0.6297747 7.974123
172 6200.000 −0.5415545 7.767715
173 6300.000 −0.4620449 7.569220
174 6400.000 −0.3903795 7.378234
175 6500.000 −0.3257951 7.194379
176 6600.000 −0.2676182 7.017301
177 6700.000 −0.2152517 6.846665
178 6800.000 −0.1681646 6.682161
179 6900.000 −0.1258835 6.523497
180 7000.000 −8.7984264E−02 6.370395
181 7100.000 −5.4086655E−02 6.222597
182 7200.000 −2.3848634E−02 6.079858
183 7300.000 3.0379370E−03 5.941947
184 7400.000 2.5742525E−02 5.808653
185 7500.000 3.9831575E−02 5.679974
186 7600.000 5.8204472E−02 5.555813
187 7700.000 7.4223846E−02 5.435678
188 7800.000 8.8077143E−02 5.319394
189 7900.000 9.5412686E−02 5.206873
190 8000.000 0.1053914 5.098123
191 8100.000 0.1136909 4.992754
192 8200.000 0.1204404 4.890626
193 8300.000 0.1257550 4.791605
194 8400.000 0.1289506 4.695578
195 8500.000 0.1261521 4.602493
196 8600.000 0.1277380 4.512395
197 8700.000 0.1282909 4.424940
198 8800.000 0.1278871 4.340022
199 8900.000 0.1265974 4.257545
200 9000.000 0.1245486 4.177756
201 9100.000 0.1217746 4.100235
202 9200.000 0.1183310 4.024898
203 9300.000 0.1142692 3.951659
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204 9400.000 0.1096367 3.880442
205 9500.000 0.1044773 3.811170
206 9600.000 9.8831564E−02 3.743773
207 9700.000 9.2737019E−02 3.678183
208 9800.000 8.6228229E−02 3.614334
209 9900.000 7.9337433E−02 3.552165
210 10000.00 7.2094239E−02 3.491616
211 10100.00 6.4526290E−02 3.432629
212 10200.00 5.6659203E−02 3.375152
213 10300.00 4.8516531E−02 3.319132
214 10400.00 4.0120408E−02 3.264520
215 10500.00 3.1491078E−02 3.211268
216 10600.00 2.2647552E−02 3.159331
217 10700.00 1.3607492E−02 3.108665
218 10800.00 4.3870425E−03 3.059227
219 10900.00 −4.9984660E−03 3.010980
220 11000.00 −1.4535142E−02 2.963883
221 11100.00 −2.4209827E−02 2.917900
222 11200.00 −3.4010295E−02 2.872996
223 11300.00 −4.3925460E−02 2.829136
224 11400.00 −5.3944673E−02 2.786288
225 11500.00 −6.4058408E−02 2.744421
226 11600.00 −7.4257568E−02 2.703504
227 11700.00 −8.4533669E−02 2.663510
228 11800.00 −9.4879173E−02 2.624408
229 11900.00 −0.1052867 2.586174
230 12000.00 −0.1157497 2.548781
231 12100.00 −0.1262621 2.512203
232 12200.00 −0.1368179 2.476419
233 12300.00 −0.1474122 2.441403
234 12400.00 −0.1580406 2.407135
235 12500.00 −0.1701095 2.373597
236 12600.00 −0.1808073 2.340777
237 12700.00 −0.1915212 2.308642
238 12800.00 −0.2022513 2.277173
239 12900.00 −0.2129946 2.246352
240 13000.00 −0.2237483 2.216160
241 13100.00 −0.2345093 2.186581
242 13200.00 −0.2463433 2.157599
243 13300.00 −0.2571144 2.129208
244 13400.00 −0.2678905 2.101380
245 13500.00 −0.2786658 2.074101
246 13600.00 −0.2894384 2.047357
247 13700.00 −0.3002066 2.021133
248 13800.00 −0.3109696 1.995416
249 13900.00 −0.3217258 1.970193
250 14000.00 −0.3324746 1.945451
251 14100.00 −0.3432152 1.921177
252 14200.00 −0.3539466 1.897360
253 14300.00 −0.3646685 1.873988
254 14400.00 −0.3753802 1.851050
255 14500.00 −0.3860818 1.828535
256 14600.00 −0.3967727 1.806433
257 14700.00 −0.4074528 1.784734
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258 14800.00 −0.4181222 1.763427
259 14900.00 −0.4287809 1.742503
260 15000.00 −0.4394290 1.721953
261 15100.00 −0.4500668 1.701768
262 15200.00 −0.4606945 1.681939
263 15300.00 −0.4713125 1.662459
264 15400.00 −0.4819210 1.643317
265 15500.00 −0.4925076 1.624508
266 15600.00 −0.5033034 1.606024
267 15700.00 −0.5138884 1.587856
268 15800.00 −0.5244666 1.569998
269 15900.00 −0.5350385 1.552442
270 16000.00 −0.5456047 1.535181
271 16100.00 −0.5561627 1.518209
272 16200.00 −0.5685115 1.501531
273 16300.00 −0.5790550 1.485150
274 16400.00 −0.5896059 1.469038
275 16500.00 −0.6001569 1.453189
276 16600.00 −0.6107085 1.437597
277 16700.00 −0.6212618 1.422258
278 16800.00 −0.6318178 1.407165
279 16900.00 −0.6423778 1.392314
280 17000.00 −0.6529418 1.377698
281 17100.00 −0.6650278 1.363322
282 17200.00 −0.6756017 1.349190
283 17300.00 −0.6861889 1.335278
284 17400.00 −0.6967878 1.321583
285 17500.00 −0.7073996 1.308100
286 17600.00 −0.7180257 1.294823
287 17700.00 −0.7286680 1.281750
288 17800.00 −0.7393280 1.268876
289 17900.00 −0.7500080 1.256197
290 18000.00 −0.7607096 1.243708
291 18100.00 −0.7714351 1.231406
292 18200.00 −0.7821867 1.219288
293 18300.00 −0.7929702 1.207349
294 18400.00 −0.8060690 1.195600
295 18500.00 −0.8169246 1.184048
296 18600.00 −0.8278037 1.172664
297 18700.00 −0.8387176 1.161446
298 18800.00 −0.8496690 1.150391
299 18900.00 −0.8606611 1.139494
300 19000.00 −0.8716962 1.128754
301 19100.00 −0.8827770 1.118167
302 19200.00 −0.8939061 1.107730
303 19300.00 −0.9050862 1.097440
304 19400.00 −0.9163203 1.087294
305 19500.00 −0.9276114 1.077291
306 19600.00 −0.9389625 1.067426
307 19700.00 −0.9503766 1.057698
308 19800.00 −0.9618567 1.048104
309 19900.00 −0.9734068 1.038642
310 20000.00 −0.9850299 1.029308
311 20100.00 −0.9967297 1.020101
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312 20200.00 −1.008510 1.011019
313 20300.00 −1.020374 1.002059
314 20400.00 −1.032327 0.9932181
315 20500.00 −1.044371 0.9844953
316 20600.00 −1.056513 0.9758883
317 20700.00 −1.068755 0.9673947
318 20800.00 −1.081103 0.9590129
319 20900.00 −1.093562 0.9507405
320 21000.00 −1.106136 0.9425758
321 21100.00 −1.118830 0.9345169
322 21200.00 −1.131651 0.9265619
323 21300.00 −1.144603 0.9187092
324 21400.00 −1.157693 0.9109567
325 21500.00 −1.170927 0.9033028
326 21600.00 −1.184310 0.8957459
327 21700.00 −1.197851 0.8882844
328 21800.00 −1.211556 0.8809167
329 21900.00 −1.225432 0.8736409
330 22000.00 −1.239488 0.8664557
331 22100.00 −1.253731 0.8593596
332 22200.00 −1.268169 0.8523510
333 22300.00 −1.282812 0.8454286
334 22400.00 −1.297670 0.8385908
335 22500.00 −1.312753 0.8318363
336 22600.00 −1.328070 0.8251638
337 22700.00 −1.343634 0.8185719
338 22800.00 −1.359455 0.8120593
339 22900.00 −1.375547 0.8056247
340 23000.00 −1.391922 0.7992668
341 23100.00 −1.408595 0.7929844
342 23200.00 −1.425581 0.7867764
343 23300.00 −1.442896 0.7806416
344 23400.00 −1.460556 0.7745786
345 23500.00 −1.478580 0.7685865
346 23600.00 −1.496987 0.7626642
347 23700.00 −1.515797 0.7568104
348 23800.00 −1.535034 0.7510244
349 23900.00 −1.554720 0.7453048
350 24000.00 −1.574883 0.7396507
351 24100.00 −1.595548 0.7340611
352 24200.00 −1.616747 0.7285349
353 24300.00 −1.638511 0.7230715
354 24400.00 −1.660876 0.7176694
355 24500.00 −1.683881 0.7123281
356 24600.00 −1.707566 0.7070464
357 24700.00 −1.731978 0.7018237
358 24800.00 −1.757165 0.6966589
359 24900.00 −1.783184 0.6915511
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C.3.2 Antimony

1 % Energy (eV) f' f''
2 1000.000 −11.80711 24.04015
3 1100.000 −9.505189 21.63727
4 1200.000 −7.983030 19.55356
5 1300.000 −6.937045 17.73706
6 1400.000 −6.199494 16.15649
7 1500.000 −5.661477 14.77380
8 1600.000 −5.315005 13.55524
9 1700.000 −5.055348 12.48680

10 1800.000 −4.883482 11.53821
11 1900.000 −4.797727 10.69303
12 2000.000 −4.748501 9.936948
13 2100.000 −4.742525 9.257375
14 2200.000 −4.890482 8.655450
15 2300.000 −4.945248 8.113972
16 2400.000 −5.024939 7.621761
17 2500.000 −5.127174 7.172884
18 2600.000 −5.250607 6.762289
19 2700.000 −5.394918 6.385658
20 2800.000 −5.561098 6.039280
21 2900.000 −5.757222 5.720049
22 3000.000 −5.994437 5.425198
23 3100.000 −6.222447 5.161564
24 3200.000 −6.477096 4.917472
25 3300.000 −6.765496 4.691054
26 3400.000 −7.091969 4.480657
27 3500.000 −7.468798 4.284714
28 3600.000 −7.912734 4.101889
29 3700.000 −8.450916 3.930999
30 3800.000 −9.132996 3.771023
31 3900.000 −10.05588 3.621086
32 4000.000 −11.49109 3.480281
33 4035.000 −12.26530 3.433017
34 4040.000 −12.39764 3.426346
35 4045.000 −12.53718 3.419696
36 4050.000 −12.68478 3.413067
37 4055.000 −12.84142 3.406457
38 4060.000 −13.00835 3.399868
39 4065.000 −13.18703 3.393298
40 4070.000 −13.37927 3.386748
41 4075.000 −13.58734 3.380218
42 4080.000 −13.81419 3.373708
43 4085.000 −14.06357 3.367217
44 4090.000 −14.34055 3.360745
45 4095.000 −14.65212 3.354294
46 4100.000 −15.00836 3.347861
47 4105.000 −15.42443 3.341448
48 4110.000 −15.92482 3.335053
49 4115.000 −16.55297 3.328679
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50 4120.000 −17.39820 3.322323
51 4125.000 −18.69591 3.315986
52 4130.000 −21.61562 3.309667
53 4135.000 −21.02710 11.06989
54 4140.000 −18.47883 11.03836
55 4145.000 −17.24737 11.00703
56 4150.000 −16.42999 10.97591
57 4155.000 −15.81923 10.94498
58 4160.000 −15.33313 10.91426
59 4165.000 −14.93064 10.88373
60 4170.000 −14.58841 10.85339
61 4175.000 −14.29177 10.82325
62 4180.000 −14.03097 10.79331
63 4185.000 −13.79909 10.76355
64 4190.000 −13.59117 10.73398
65 4195.000 −13.40348 10.70459
66 4200.000 −13.23316 10.67540
67 4205.000 −13.07793 10.64639
68 4210.000 −12.93603 10.61755
69 4215.000 −12.80599 10.58891
70 4220.000 −12.68668 10.56044
71 4225.000 −12.57708 10.53215
72 4230.000 −12.47643 10.50404
73 4283.000 −11.84502 10.21658
74 4288.000 −11.82186 10.19042
75 4293.000 −11.80506 10.16443
76 4298.000 −11.79486 10.13859
77 4300.000 −11.79271 10.12830
78 4303.000 −11.79162 10.11291
79 4308.000 −11.79578 10.08739
80 4313.000 −11.80796 10.06202
81 4318.000 −11.82891 10.03681
82 4323.000 −11.85965 10.01175
83 4328.000 −11.90151 9.986842
84 4333.000 −11.95625 9.962086
85 4338.000 −12.02622 9.937481
86 4343.000 −12.11484 9.913022
87 4348.000 −12.22689 9.888711
88 4353.000 −12.36969 9.864546
89 4358.000 −12.55505 9.840529
90 4363.000 −12.80395 9.816654
91 4368.000 −13.15910 9.792922
92 4373.000 −13.73182 9.769332
93 4378.000 −15.04990 9.745885
94 4383.000 −14.90222 13.57064
95 4388.000 −13.52772 13.53626
96 4393.000 −12.85290 13.50208
97 4398.000 −12.39108 13.46813
98 4400.000 −12.23893 13.45460
99 4403.000 −12.03474 13.43438

100 4408.000 −11.74198 13.40083
101 4413.000 −11.49199 13.36750
102 4418.000 −11.27291 13.33437
103 4423.000 −11.07733 13.30145
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104 4428.000 −10.90027 13.26872
105 4433.000 −10.73827 13.23620
106 4438.000 −10.58879 13.20388
107 4443.000 −10.44995 13.17176
108 4448.000 −10.32025 13.13983
109 4453.000 −10.19854 13.10810
110 4458.000 −10.08389 13.07656
111 4463.000 −9.975549 13.04522
112 4468.000 −9.872877 13.01406
113 4473.000 −9.775362 12.98309
114 4478.000 −9.682563 12.95232
115 4500.000 −9.321861 12.81909
116 4600.000 −8.350879 12.25607
117 4601.000 −8.345910 12.25077
118 4606.000 −8.322629 12.22437
119 4611.000 −8.302059 12.19813
120 4616.000 −8.284369 12.17204
121 4621.000 −8.269765 12.14611
122 4626.000 −8.258502 12.12033
123 4631.000 −8.250902 12.09470
124 4636.000 −8.247368 12.06922
125 4641.000 −8.248412 12.04389
126 4646.000 −8.254697 12.01871
127 4651.000 −8.267096 11.99367
128 4656.000 −8.286781 11.96878
129 4661.000 −8.315382 11.94404
130 4666.000 −8.355250 11.91944
131 4671.000 −8.409937 11.89498
132 4676.000 −8.485182 11.87067
133 4681.000 −8.591166 11.84650
134 4686.000 −8.748684 11.82247
135 4691.000 −9.012354 11.79857
136 4696.000 −9.646976 11.77482
137 4700.000 −9.793721 13.59795
138 4701.000 −9.514109 13.59295
139 4706.000 −8.859342 13.56806
140 4711.000 −8.526525 13.54332
141 4716.000 −8.293218 13.51871
142 4721.000 −8.109350 13.49423
143 4726.000 −7.955288 13.46990
144 4731.000 −7.821229 13.44569
145 4736.000 −7.701613 13.42163
146 4741.000 −7.592951 13.39769
147 4746.000 −7.492924 13.37389
148 4751.000 −7.399879 13.35022
149 4756.000 −7.312633 13.32668
150 4761.000 −7.230290 13.30327
151 4766.000 −7.152167 13.27999
152 4771.000 −7.077701 13.25684
153 4776.000 −7.006462 13.23381
154 4781.000 −6.938091 13.21092
155 4786.000 −6.872299 13.18815
156 4791.000 −6.808825 13.16550
157 4796.000 −6.747465 13.14297
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158 4800.000 −6.699776 13.12504
159 4900.000 −5.765469 12.70139
160 5000.000 −5.102882 12.32126
161 5100.000 −4.583796 11.97982
162 5200.000 −4.157225 11.67296
163 5300.000 −3.795290 11.39715
164 5400.000 −3.122936 11.13059
165 5500.000 −2.821460 10.83750
166 5600.000 −2.555288 10.56187
167 5700.000 −2.147382 10.30077
168 5800.000 −1.922743 10.02468
169 5900.000 −1.721841 9.759982
170 6000.000 −1.541518 9.506063
171 6100.000 −1.379160 9.262341
172 6200.000 −1.220096 9.026402
173 6300.000 −1.086831 8.799265
174 6400.000 −0.9661846 8.580628
175 6500.000 −0.8568169 8.370067
176 6600.000 −0.7575686 8.167182
177 6700.000 −0.6674300 7.971601
178 6800.000 −0.5855171 7.782971
179 6900.000 −0.5110527 7.600965
180 7000.000 −0.4433494 7.425272
181 7100.000 −0.3817973 7.255600
182 7200.000 −0.3258536 7.091674
183 7300.000 −0.2750331 6.933233
184 7400.000 −0.2289017 6.780035
185 7500.000 −0.1870687 6.631847
186 7600.000 −0.1491827 6.488451
187 7700.000 −0.1149265 6.349641
188 7800.000 −8.4013142E−02 6.215221
189 7900.000 −5.6183465E−02 6.085007
190 8000.000 −3.1202115E−02 5.958823
191 8100.000 −8.8558793E−03 5.836503
192 8200.000 1.1047892E−02 5.717890
193 8300.000 2.2593230E−02 5.602978
194 8400.000 3.8073659E−02 5.491742
195 8500.000 5.1603872E−02 5.383783
196 8600.000 6.3303068E−02 5.278973
197 8700.000 7.3269002E−02 5.177189
198 8800.000 7.7152573E−02 5.078423
199 8900.000 8.3780266E−02 4.982624
200 9000.000 8.9963034E−02 4.890071
201 9100.000 9.4975851E−02 4.800124
202 9200.000 9.8902687E−02 4.712685
203 9300.000 0.1018212 4.627656
204 9400.000 0.1034972 4.544953
205 9500.000 0.1045515 4.464508
206 9600.000 0.1047990 4.386224
207 9700.000 0.1042965 4.310025
208 9800.000 0.1030971 4.235836
209 9900.000 0.1012531 4.163585
210 10000.00 9.8678328E−02 4.093205
211 10100.00 9.5506266E−02 4.024632
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212 10200.00 9.1962896E−02 3.957804
213 10300.00 8.7934487E−02 3.892659
214 10400.00 8.3456486E−02 3.829142
215 10500.00 7.8560412E−02 3.767197
216 10600.00 7.3275670E−02 3.706771
217 10700.00 6.7629695E−02 3.647815
218 10800.00 6.1647858E−02 3.590281
219 10900.00 5.5354048E−02 3.534122
220 11000.00 4.8770312E−02 3.479294
221 11100.00 4.1917399E−02 3.425756
222 11200.00 3.4814678E−02 3.373466
223 11300.00 2.7480043E−02 3.322384
224 11400.00 1.9930463E−02 3.272475
225 11500.00 1.2181519E−02 3.223700
226 11600.00 4.2479681E−03 3.176027
227 11700.00 −3.8563842E−03 3.129421
228 11800.00 −1.2118864E−02 3.083849
229 11900.00 −2.0527324E−02 3.039283
230 12000.00 −2.9070716E−02 2.995691
231 12100.00 −3.7738487E−02 2.953044
232 12200.00 −4.6520751E−02 2.911317
233 12300.00 −5.5408530E−02 2.870480
234 12400.00 −6.4393088E−02 2.830511
235 12500.00 −7.3466599E−02 2.791382
236 12600.00 −8.2621500E−02 2.753071
237 12700.00 −9.1850720E−02 2.715556
238 12800.00 −0.1011479 2.678812
239 12900.00 −0.1105068 2.642820
240 13000.00 −0.1199219 2.607559
241 13100.00 −0.1293878 2.573008
242 13200.00 −0.1388994 2.539149
243 13300.00 −0.1484523 2.505962
244 13400.00 −0.1580421 2.473431
245 13500.00 −0.1676648 2.441537
246 13600.00 −0.1773168 2.410263
247 13700.00 −0.1869944 2.379595
248 13800.00 −0.1966945 2.349515
249 13900.00 −0.2064141 2.320009
250 14000.00 −0.2161506 2.291061
251 14100.00 −0.2259012 2.262659
252 14200.00 −0.2356635 2.234788
253 14300.00 −0.2456708 2.207434
254 14400.00 −0.2572366 2.180591
255 14500.00 −0.2670264 2.154254
256 14600.00 −0.2768171 2.128397
257 14700.00 −0.2866097 2.103008
258 14800.00 −0.2964028 2.078076
259 14900.00 −0.3061953 2.053590
260 15000.00 −0.3159861 2.029539
261 15100.00 −0.3257742 2.005913
262 15200.00 −0.3355593 1.982702
263 15300.00 −0.3466452 1.959902
264 15400.00 −0.3564211 1.937504
265 15500.00 −0.3661904 1.915492
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266 15600.00 −0.3759529 1.893857
267 15700.00 −0.3857084 1.872590
268 15800.00 −0.3954565 1.851684
269 15900.00 −0.4051970 1.831129
270 16000.00 −0.4149298 1.810918
271 16100.00 −0.4246547 1.791044
272 16200.00 −0.4343716 1.771498
273 16300.00 −0.4440804 1.752273
274 16400.00 −0.4537815 1.733363
275 16500.00 −0.4634750 1.714760
276 16600.00 −0.4731609 1.696458
277 16700.00 −0.4828395 1.678449
278 16800.00 −0.4925109 1.660729
279 16900.00 −0.5021759 1.643290
280 17000.00 −0.5118346 1.626127
281 17100.00 −0.5214876 1.609234
282 17200.00 −0.5311353 1.592604
283 17300.00 −0.5407780 1.576234
284 17400.00 −0.5504167 1.560116
285 17500.00 −0.5600520 1.544246
286 17600.00 −0.5696844 1.528619
287 17700.00 −0.5793166 1.513229
288 17800.00 −0.5891474 1.498075
289 17900.00 −0.5988278 1.483148
290 18000.00 −0.6104063 1.468477
291 18100.00 −0.6200312 1.454026
292 18200.00 −0.6296562 1.439790
293 18300.00 −0.6392828 1.425764
294 18400.00 −0.6489127 1.411943
295 18500.00 −0.6585468 1.398324
296 18600.00 −0.6681861 1.384903
297 18700.00 −0.6778318 1.371676
298 18800.00 −0.6874846 1.358639
299 18900.00 −0.6971462 1.345788
300 19000.00 −0.7083941 1.333125
301 19100.00 −0.7180721 1.320661
302 19200.00 −0.7277620 1.308373
303 19300.00 −0.7374650 1.296258
304 19400.00 −0.7471827 1.284311
305 19500.00 −0.7569164 1.272531
306 19600.00 −0.7666674 1.260913
307 19700.00 −0.7764372 1.249454
308 19800.00 −0.7862270 1.238153
309 19900.00 −0.7960388 1.227006
310 20000.00 −0.8058740 1.216009
311 20100.00 −0.8157342 1.205161
312 20200.00 −0.8256211 1.194458
313 20300.00 −0.8355370 1.183899
314 20400.00 −0.8478423 1.173494
315 20500.00 −0.8578241 1.163248
316 20600.00 −0.8678378 1.153137
317 20700.00 −0.8778864 1.143159
318 20800.00 −0.8879718 1.133312
319 20900.00 −0.8980965 1.123593
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320 21000.00 −0.9082623 1.114000
321 21100.00 −0.9184713 1.104530
322 21200.00 −0.9287258 1.095182
323 21300.00 −0.9390277 1.085954
324 21400.00 −0.9493799 1.076844
325 21500.00 −0.9597845 1.067848
326 21600.00 −0.9702440 1.058967
327 21700.00 −0.9807608 1.050196
328 21800.00 −0.9913374 1.041536
329 21900.00 −1.001977 1.032983
330 22000.00 −1.012682 1.024537
331 22100.00 −1.023455 1.016194
332 22200.00 −1.034300 1.007954
333 22300.00 −1.045219 0.9998155
334 22400.00 −1.056216 0.9917758
335 22500.00 −1.067293 0.9838335
336 22600.00 −1.078455 0.9759872
337 22700.00 −1.089705 0.9682353
338 22800.00 −1.101046 0.9605765
339 22900.00 −1.112482 0.9530089
340 23000.00 −1.124018 0.9455312
341 23100.00 −1.135657 0.9381419
342 23200.00 −1.147403 0.9308398
343 23300.00 −1.159261 0.9236235
344 23400.00 −1.171236 0.9164914
345 23500.00 −1.183332 0.9094423
346 23600.00 −1.195555 0.9024749
347 23700.00 −1.207909 0.8955880
348 23800.00 −1.220399 0.8887804
349 23900.00 −1.233033 0.8820506
350 24000.00 −1.245815 0.8753976
351 24100.00 −1.258751 0.8688202
352 24200.00 −1.271849 0.8623172
353 24300.00 −1.285115 0.8558877
354 24400.00 −1.298555 0.8495302
355 24500.00 −1.312179 0.8432438
356 24600.00 −1.325992 0.8370275
357 24700.00 −1.340004 0.8308802
358 24800.00 −1.354224 0.8248008
359 24900.00 −1.368660 0.8187884
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C.3.3 Gallium

1 % Energy (eV) f' f''
2 1000.000 −12.78024 2.622440
3 1100.000 −23.67351 2.312109
4 1200.000 −2.682566 11.65662
5 1205.000 −3.065672 10.81520
6 1210.000 −3.465937 10.08000
7 1215.000 −3.875939 9.435927
8 1220.000 −4.290639 8.870313
9 1225.000 −4.706735 8.372511

10 1230.000 −5.122201 7.933538
11 1235.000 −5.535975 7.545800
12 1240.000 −5.947742 7.202854
13 1245.000 −6.357804 6.899230
14 1250.000 −6.766998 6.630270
15 1255.000 −7.176702 6.392002
16 1260.000 −7.588907 6.181035
17 1265.000 −8.006413 5.994472
18 1270.000 −8.433251 5.829834
19 1275.000 −8.875569 5.685009
20 1280.000 −9.343676 5.558189
21 1285.000 −9.857612 5.447840
22 1290.000 −10.46733 5.352658
23 1295.000 −11.39250 5.271546
24 1300.000 −11.80414 7.023297
25 1305.000 −11.45599 6.967597
26 1310.000 −11.47662 6.923607
27 1315.000 −11.60475 6.890850
28 1320.000 −11.78719 6.868974
29 1325.000 −12.00424 6.857738
30 1330.000 −12.24675 6.857008
31 1335.000 −12.51003 6.866754
32 1340.000 −12.79155 6.887047
33 1345.000 −13.09006 6.918058
34 1350.000 −13.40507 6.960057
35 1355.000 −13.73658 7.013420
36 1360.000 −14.08498 7.078628
37 1365.000 −14.45092 7.156275
38 1370.000 −14.83532 7.247075
39 1375.000 −15.23928 7.351871
40 1380.000 −15.66408 7.471646
41 1385.000 −16.11121 7.607537
42 1390.000 −16.58234 7.760849
43 1395.000 −17.07932 7.933075
44 1400.000 −17.60420 8.125916
45 1500.000 −4.018536 12.44893
46 1600.000 −2.885425 11.31038
47 1700.000 −2.145375 10.32254
48 1800.000 −1.592947 9.482872
49 1900.000 −1.184808 8.750233
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50 2000.000 −0.8953396 8.107148
51 2100.000 −0.6709451 7.539242
52 2200.000 −0.4910424 7.033835
53 2300.000 −0.2669138 6.570822
54 2400.000 −0.1589576 6.143772
55 2500.000 −7.8631461E−02 5.756646
56 2600.000 −2.8784975E−02 5.404647
57 2700.000 1.1684831E−02 5.085346
58 2800.000 3.8398005E−02 4.793488
59 2900.000 5.4030951E−02 4.525991
60 3000.000 5.7593603E−02 4.280249
61 3100.000 5.6503318E−02 4.055951
62 3200.000 4.9936719E−02 3.849130
63 3300.000 3.8955834E−02 3.657989
64 3400.000 2.4415979E−02 3.480960
65 3500.000 7.0093237E−03 3.316668
66 3600.000 −1.2702152E−02 3.163903
67 3700.000 −3.4260809E−02 3.021596
68 3800.000 −5.7292998E−02 2.888803
69 3900.000 −8.1493519E−02 2.764682
70 4000.000 −0.1066125 2.648485
71 4100.000 −0.1324460 2.539543
72 4200.000 −0.1588271 2.437257
73 4300.000 −0.1856200 2.341089
74 4400.000 −0.2127144 2.250556
75 4500.000 −0.2400214 2.165220
76 4600.000 −0.2674696 2.084686
77 4700.000 −0.2950028 2.008598
78 4800.000 −0.3225760 1.936629
79 4900.000 −0.3527754 1.868593
80 5000.000 −0.3820444 1.804215
81 5100.000 −0.4095708 1.743193
82 5200.000 −0.4370374 1.685247
83 5300.000 −0.4644422 1.630172
84 5400.000 −0.4917867 1.577779
85 5500.000 −0.5190772 1.527894
86 5600.000 −0.5463270 1.480357
87 5700.000 −0.5766885 1.435150
88 5800.000 −0.6039156 1.392048
89 5900.000 −0.6311359 1.350885
90 6000.000 −0.6583713 1.311545
91 6100.000 −0.6856458 1.273920
92 6200.000 −0.7129853 1.237912
93 6300.000 −0.7404187 1.203427
94 6400.000 −0.7679761 1.170380
95 6500.000 −0.7956909 1.138691
96 6600.000 −0.8235986 1.108286
97 6700.000 −0.8517374 1.079096
98 6800.000 −0.8801485 1.051055
99 6900.000 −0.9088759 1.024103

100 7000.000 −0.9379674 0.9981853
101 7100.000 −0.9674743 0.9732476
102 7200.000 −0.9974524 0.9492409
103 7300.000 −1.027962 0.9261189
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104 7400.000 −1.059070 0.9038382
105 7500.000 −1.090847 0.8823581
106 7600.000 −1.123374 0.8616402
107 7700.000 −1.156737 0.8416483
108 7800.000 −1.191034 0.8223487
109 7900.000 −1.226374 0.8037095
110 8000.000 −1.262904 0.7857007
111 8100.000 −1.300705 0.7682937
112 8200.000 −1.339959 0.7514619
113 8300.000 −1.380844 0.7351796
114 8400.000 −1.423561 0.7194232
115 8500.000 −1.468345 0.7041699
116 8600.000 −1.515470 0.6893983
117 8700.000 −1.565254 0.6750884
118 8800.000 −1.618083 0.6612206
119 8900.000 −1.674413 0.6477770
120 9000.000 −1.734817 0.6348592
121 9100.000 −1.799964 0.6223299
122 9200.000 −1.870713 0.6101736
123 9300.000 −1.948166 0.5983752
124 9400.000 −2.033750 0.5869208
125 9500.000 −2.129380 0.5757968
126 9600.000 −2.237686 0.5649906
127 9700.000 −2.362435 0.5544900
128 9800.000 −2.509282 0.5442833
129 9900.000 −2.687268 0.5343597
130 10000.00 −2.912190 0.5247084
131 10100.00 −3.215471 0.5153197
132 10200.00 −3.674937 0.5061839
133 10270.00 −4.222119 0.4999343
134 10275.00 −4.276143 0.4994925
135 10280.00 −4.333321 0.4990512
136 10285.00 −4.394018 0.4986105
137 10290.00 −4.458680 0.4981703
138 10295.00 −4.527843 0.4977308
139 10300.00 −4.602160 0.4972918
140 10305.00 −4.682434 0.4968535
141 10310.00 −4.769671 0.4964157
142 10315.00 −4.865138 0.4959786
143 10320.00 −4.970545 0.4955420
144 10325.00 −5.088117 0.4951059
145 10330.00 −5.220948 0.4946705
146 10335.00 −5.373483 0.4942356
147 10340.00 −5.552439 0.4938013
148 10345.00 −5.768679 0.4933676
149 10350.00 −6.041520 0.4929345
150 10355.00 −6.410619 0.4925020
151 10360.00 −6.981718 0.4920700
152 10365.00 −8.292125 0.4916386
153 10370.00 −7.948841 3.892291
154 10375.00 −6.856984 3.888264
155 10380.00 −6.320314 3.884248
156 10385.00 −5.960458 3.880240
157 10390.00 −5.688938 3.876241
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158 10395.00 −5.470593 3.872252
159 10400.00 −5.287859 3.868273
160 10405.00 −5.130586 3.864302
161 10410.00 −4.992494 3.860340
162 10415.00 −4.869360 3.856387
163 10420.00 −4.758223 3.852444
164 10425.00 −4.656924 3.848509
165 10430.00 −4.563839 3.844584
166 10435.00 −4.477720 3.840667
167 10440.00 −4.397598 3.836760
168 10445.00 −4.322653 3.832861
169 10450.00 −4.252260 3.828971
170 10455.00 −4.185891 3.825090
171 10460.00 −4.123104 3.821218
172 10465.00 −4.063528 3.817355
173 10500.00 −3.714567 3.790558
174 10600.00 −3.067343 3.716298
175 10700.00 −2.652269 3.645302
176 10800.00 −2.347398 3.577394
177 10900.00 −2.107723 3.512410
178 11000.00 −1.911404 3.450194
179 11100.00 −1.746119 3.390604
180 11200.00 −1.604182 3.333506
181 11300.00 −1.480459 3.278773
182 11400.00 −1.371341 3.226288
183 11500.00 −1.274183 3.175941
184 11600.00 −1.186988 3.127628
185 11700.00 −1.108208 3.081252
186 11800.00 −1.036615 3.036722
187 11900.00 −0.9712204 2.993952
188 12000.00 −0.9112132 2.952861
189 12100.00 −0.8559216 2.913374
190 12200.00 −0.8047814 2.875419
191 12300.00 −0.7573131 2.838929
192 12400.00 −0.7131080 2.803839
193 12500.00 −0.6718121 2.770091
194 12600.00 −0.6331190 2.737627
195 12700.00 −0.5967606 2.706394
196 12800.00 −0.5624999 2.676341
197 12900.00 −0.5301288 2.647420
198 13000.00 −0.4994608 2.619587
199 13100.00 −0.4703301 2.592797
200 13200.00 −0.4425876 2.567012
201 13300.00 −0.4160981 2.542190
202 13400.00 −0.3907388 2.518298
203 13500.00 −0.2629591 2.493533
204 13600.00 −0.2365060 2.463472
205 13700.00 −0.2113342 2.433945
206 13800.00 −0.1873535 2.404938
207 13900.00 −0.1644931 2.376440
208 14000.00 −0.1426874 2.348438
209 14100.00 −0.1218766 2.320921
210 14200.00 −0.1020055 2.293878
211 14300.00 −8.3022378E−02 2.267297
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212 14400.00 −6.4879976E−02 2.241168
213 14500.00 −4.7533680E−02 2.215482
214 14600.00 −3.0942462E−02 2.190227
215 14700.00 −1.5068039E−02 2.165395
216 14800.00 1.2577558E−04 2.140975
217 14900.00 1.4672253E−02 2.116958
218 15000.00 2.8603101E−02 2.093337
219 15100.00 4.1947644E−02 2.070101
220 15200.00 5.4733433E−02 2.047243
221 15300.00 6.6986710E−02 2.024754
222 15400.00 7.8731716E−02 2.002627
223 15500.00 8.9991711E−02 1.980853
224 15600.00 0.1007883 1.959426
225 15700.00 0.1111419 1.938337
226 15800.00 0.1210721 1.917580
227 15900.00 0.1305971 1.897147
228 16000.00 0.1397342 1.877033
229 16100.00 0.1484999 1.857229
230 16200.00 0.1569097 1.837731
231 16300.00 0.1649782 1.818532
232 16400.00 0.1727197 1.799624
233 16500.00 0.1801474 1.781004
234 16600.00 0.1872739 1.762664
235 16700.00 0.1941113 1.744599
236 16800.00 0.2006708 1.726804
237 16900.00 0.2069636 1.709274
238 17000.00 0.2130000 1.692002
239 17100.00 0.2187899 1.674985
240 17200.00 0.2243427 1.658216
241 17300.00 0.2296673 1.641692
242 17400.00 0.2347725 1.625407
243 17500.00 0.2396665 1.609357
244 17600.00 0.2443571 1.593537
245 17700.00 0.2488518 1.577943
246 17800.00 0.2531577 1.562572
247 17900.00 0.2572820 1.547417
248 18000.00 0.2612309 1.532475
249 18100.00 0.2650110 1.517744
250 18200.00 0.2686282 1.503217
251 18300.00 0.2720882 1.488893
252 18400.00 0.2753968 1.474766
253 18500.00 0.2785591 1.460833
254 18600.00 0.2815804 1.447092
255 18700.00 0.2844656 1.433537
256 18800.00 0.2872191 1.420167
257 18900.00 0.2898459 1.406977
258 19000.00 0.2923500 1.393965
259 19100.00 0.2947358 1.381127
260 19200.00 0.2970072 1.368460
261 19300.00 0.2991680 1.355961
262 19400.00 0.3012221 1.343627
263 19500.00 0.3031730 1.331455
264 19600.00 0.3050241 1.319443
265 19700.00 0.3067788 1.307588
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266 19800.00 0.3084402 1.295886
267 19900.00 0.3100115 1.284336
268 20000.00 0.3114955 1.272934
269 20100.00 0.3128952 1.261679
270 20200.00 0.3142134 1.250567
271 20300.00 0.3154525 1.239597
272 20400.00 0.3166154 1.228765
273 20500.00 0.3177043 1.218071
274 20600.00 0.3187217 1.207510
275 20700.00 0.3196698 1.197081
276 20800.00 0.3165946 1.186852
277 20900.00 0.3173937 1.176786
278 21000.00 0.3181323 1.166845
279 21100.00 0.3188125 1.157028
280 21200.00 0.3194361 1.147333
281 21300.00 0.3200049 1.137757
282 21400.00 0.3205208 1.128299
283 21500.00 0.3209854 1.118956
284 21600.00 0.3214004 1.109727
285 21700.00 0.3217674 1.100609
286 21800.00 0.3220879 1.091602
287 21900.00 0.3223633 1.082703
288 22000.00 0.3225952 1.073911
289 22100.00 0.3227850 1.065223
290 22200.00 0.3229339 1.056639
291 22300.00 0.3230432 1.048156
292 22400.00 0.3231143 1.039773
293 22500.00 0.3231483 1.031489
294 22600.00 0.3231463 1.023301
295 22700.00 0.3231097 1.015209
296 22800.00 0.3230393 1.007210
297 22900.00 0.3229364 0.9993043
298 23000.00 0.3228019 0.9914892
299 23100.00 0.3226368 0.9837637
300 23200.00 0.3224420 0.9761264
301 23300.00 0.3222186 0.9685761
302 23400.00 0.3219673 0.9611112
303 23500.00 0.3216892 0.9537306
304 23600.00 0.3213849 0.9464331
305 23700.00 0.3210554 0.9392173
306 23800.00 0.3203978 0.9320825
307 23900.00 0.3200224 0.9250281
308 24000.00 0.3196232 0.9180520
309 24100.00 0.3192016 0.9111528
310 24200.00 0.3187584 0.9043294
311 24300.00 0.3182942 0.8975810
312 24400.00 0.3175611 0.8909068
313 24500.00 0.3170580 0.8843057
314 24600.00 0.3165355 0.8777761
315 24700.00 0.3159943 0.8713171
316 24800.00 0.3154348 0.8649277
317 24900.00 0.3148576 0.8586066
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C.3.4 Arsenide

1 % Energy (eV) f' f''
2 1000.000 −9.429335 3.484835
3 1100.000 −10.50740 3.068583
4 1200.000 −12.45976 2.726221
5 1226.000 −13.32295 2.647042
6 1231.000 −13.52381 2.632231
7 1236.000 −13.73969 2.617549
8 1241.000 −13.97290 2.602995
9 1246.000 −14.22623 2.588568

10 1251.000 −14.50320 2.574266
11 1256.000 −14.80822 2.560088
12 1261.000 −15.14697 2.546031
13 1266.000 −15.52682 2.532096
14 1271.000 −15.95758 2.518280
15 1276.000 −16.45258 2.504581
16 1281.000 −17.03035 2.490999
17 1286.000 −17.71758 2.477531
18 1291.000 −18.55410 2.464178
19 1296.000 −19.60247 2.450936
20 1300.000 −20.66173 2.440423
21 1301.000 −20.96742 2.437805
22 1306.000 −22.84129 2.424784
23 1311.000 −25.63062 2.411871
24 1316.000 −30.43916 2.399066
25 1321.000 −42.96489 2.386366
26 1326.000 −36.88134 37.12148
27 1331.000 −23.81698 32.86283
28 1336.000 −18.21088 29.21878
29 1341.000 −15.38761 26.09086
30 1346.000 −14.29931 23.39770
31 1351.000 −14.89571 21.07187
32 1356.000 −19.10551 19.05730
33 1361.000 −17.71439 34.55799
34 1366.000 −9.902804 30.98588
35 1371.000 −6.451541 27.89469
36 1376.000 −4.473392 25.21188
37 1381.000 −3.272238 22.87692
38 1386.000 −2.547956 20.83909
39 1391.000 −2.139610 19.05578
40 1396.000 −1.947594 17.49110
41 1400.000 −1.906566 16.37623
42 1401.000 −1.908722 16.11472
43 1406.000 −1.979324 14.90097
44 1411.000 −2.128795 13.82806
45 1416.000 −2.335210 12.87744
46 1421.000 −2.582657 12.03327
47 1429.000 −3.035664 10.87096
48 1431.000 −3.156718 10.61208
49 1434.000 −3.342456 10.24493
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50 1436.000 −3.468604 10.01348
51 1439.000 −3.660655 9.684943
52 1441.000 −3.790241 9.477643
53 1444.000 −3.986477 9.183137
54 1446.000 −4.118299 8.997155
55 1449.000 −4.317206 8.732725
56 1451.000 −4.450428 8.565610
57 1454.000 −4.650976 8.327834
58 1456.000 −4.785047 8.177460
59 1459.000 −4.986594 7.963365
60 1464.000 −5.323416 7.634889
61 1469.000 −5.661268 7.338550
62 1474.000 −6.000402 7.070988
63 1479.000 −6.341493 6.829267
64 1484.000 −6.685682 6.610822
65 1489.000 −7.034696 6.413407
66 1494.000 −7.391076 6.235057
67 1499.000 −7.758647 6.074046
68 1500.000 −7.833984 6.043787
69 1504.000 −8.143474 5.928864
70 1509.000 −8.556079 5.798186
71 1514.000 −9.017524 5.680850
72 1519.000 −9.581702 5.575845
73 1524.000 −10.49753 5.482283
74 1529.000 −10.74992 7.293207
75 1534.000 −10.33972 7.215660
76 1539.000 −10.28549 7.147589
77 1544.000 −10.33768 7.088501
78 1549.000 −10.44271 7.037976
79 1554.000 −10.58016 6.995667
80 1559.000 −10.74015 6.961286
81 1564.000 −10.91732 6.934611
82 1569.000 −11.10853 6.915473
83 1574.000 −11.31185 6.903756
84 1579.000 −11.52614 6.899396
85 1584.000 −11.75070 6.902381
86 1589.000 −11.98520 6.912745
87 1594.000 −12.22952 6.930571
88 1599.000 −12.48373 6.955991
89 1600.000 −12.53578 6.962002
90 1604.000 −12.74801 6.989188
91 1609.000 −13.02272 7.030393
92 1614.000 −13.30825 7.079892
93 1619.000 −13.60511 7.138022
94 1624.000 −13.91390 7.205182
95 1700.000 −20.74950 9.869416
96 1800.000 −3.552651 11.95705
97 1900.000 −2.690663 11.04163
98 2000.000 −2.021769 10.23876
99 2100.000 −1.535833 9.514412

100 2200.000 −1.162870 8.867381
101 2300.000 −0.8732193 8.286686
102 2400.000 −0.6465170 7.763263
103 2500.000 −0.4682811 7.289583
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104 2600.000 −0.3279317 6.859340
105 2700.000 −0.2076773 6.464999
106 2800.000 −0.1174221 6.100526
107 2900.000 −5.1044028E−02 5.765710
108 3000.000 −3.8216980E−03 5.457530
109 3100.000 3.1523775E−02 5.175311
110 3200.000 5.6195986E−02 4.914834
111 3300.000 7.2109155E−02 4.673888
112 3400.000 8.0811761E−02 4.450536
113 3500.000 8.3562613E−02 4.243082
114 3600.000 8.1391051E−02 4.050028
115 3700.000 7.5142905E−02 3.870053
116 3800.000 6.5516859E−02 3.701986
117 3900.000 5.2611321E−02 3.544797
118 4000.000 3.7832122E−02 3.397550
119 4100.000 2.1137524E−02 3.259409
120 4200.000 2.8622695E−03 3.129628
121 4300.000 −1.6713578E−02 3.007537
122 4400.000 −3.7355002E−02 2.892534
123 4500.000 −5.8865067E−02 2.784072
124 4600.000 −8.1078410E−02 2.681660
125 4700.000 −0.1038563 2.584851
126 4800.000 −0.1270824 2.493236
127 4900.000 −0.1506592 2.406449
128 5000.000 −0.1745056 2.324152
129 5100.000 −0.1985538 2.246036
130 5200.000 −0.2227479 2.171820
131 5300.000 −0.2470421 2.101246
132 5400.000 −0.2713985 2.034077
133 5500.000 −0.2957873 1.970095
134 5600.000 −0.3201844 1.909100
135 5700.000 −0.3445683 1.850907
136 5800.000 −0.3722760 1.795460
137 5900.000 −0.3987048 1.742554
138 6000.000 −0.4229532 1.692062
139 6100.000 −0.4471485 1.643750
140 6200.000 −0.4712933 1.597494
141 6300.000 −0.4953918 1.553177
142 6400.000 −0.5194498 1.510691
143 6500.000 −0.5434756 1.469935
144 6600.000 −0.5674836 1.430815
145 6700.000 −0.5951601 1.393386
146 6800.000 −0.6191666 1.357447
147 6900.000 −0.6431822 1.322897
148 7000.000 −0.6672234 1.289664
149 7100.000 −0.6913077 1.257681
150 7200.000 −0.7154541 1.226885
151 7300.000 −0.7396829 1.197217
152 7400.000 −0.7640153 1.168624
153 7500.000 −0.7884746 1.141051
154 7600.000 −0.8130853 1.114452
155 7700.000 −0.8378736 1.088781
156 7800.000 −0.8628673 1.063993
157 7900.000 −0.8880959 1.040049

127



158 8000.000 −0.9135913 1.016910
159 8100.000 −0.9393874 0.9945406
160 8200.000 −0.9655202 0.9729064
161 8300.000 −0.9920292 0.9519748
162 8400.000 −1.018956 0.9317159
163 8500.000 −1.046346 0.9121004
164 8600.000 −1.074249 0.8931014
165 8700.000 −1.102717 0.8746931
166 8800.000 −1.131810 0.8568507
167 8900.000 −1.161590 0.8395514
168 9000.000 −1.192185 0.8228930
169 9100.000 −1.223608 0.8067341
170 9200.000 −1.255944 0.7910547
171 9300.000 −1.289289 0.7758356
172 9400.000 −1.323748 0.7610589
173 9500.000 −1.359442 0.7467071
174 9600.000 −1.396506 0.7327641
175 9700.000 −1.435091 0.7192142
176 9800.000 −1.475373 0.7060425
177 9900.000 −1.517552 0.6932349
178 10000.00 −1.561863 0.6807779
179 10100.00 −1.608575 0.6686586
180 10200.00 −1.658008 0.6568649
181 10300.00 −1.710545 0.6453850
182 10400.00 −1.766640 0.6342077
183 10500.00 −1.826852 0.6233222
184 10600.00 −1.891866 0.6127184
185 10700.00 −1.962539 0.6023866
186 10800.00 −2.039969 0.5923173
187 10900.00 −2.125583 0.5825018
188 11000.00 −2.221288 0.5729312
189 11100.00 −2.329711 0.5635975
190 11200.00 −2.454608 0.5544930
191 11300.00 −2.601625 0.5456098
192 11400.00 −2.779780 0.5369410
193 11500.00 −3.004832 0.5284795
194 11600.00 −3.308127 0.5202186
195 11700.00 −3.767294 0.5121522
196 11769.00 −4.303414 0.5066964
197 11774.00 −4.356803 0.5063044
198 11779.00 −4.413270 0.5059130
199 11784.00 −4.473176 0.5055220
200 11789.00 −4.536944 0.5051315
201 11794.00 −4.605115 0.5047414
202 11799.00 −4.678308 0.5043518
203 11800.00 −4.693621 0.5042739
204 11804.00 −4.757299 0.5039626
205 11809.00 −4.843057 0.5035739
206 11814.00 −4.936817 0.5031856
207 11819.00 −5.040181 0.5027978
208 11824.00 −5.155290 0.5024104
209 11829.00 −5.285084 0.5020235
210 11834.00 −5.433736 0.5016371
211 11839.00 −5.607609 0.5012511
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212 11844.00 −5.816780 0.5008656
213 11849.00 −6.078978 0.5004805
214 11854.00 −6.429896 0.5000958
215 11859.00 −6.960586 0.4997116
216 11864.00 −8.076112 0.4993278
217 11869.00 −8.254848 3.865319
218 11874.00 −7.011160 3.861774
219 11879.00 −6.446832 3.858236
220 11884.00 −6.076585 3.854706
221 11889.00 −5.800160 3.851182
222 11894.00 −5.579269 3.847666
223 11899.00 −5.395152 3.844157
224 11900.00 −5.361740 3.843457
225 11904.00 −5.237200 3.840655
226 11909.00 −5.098830 3.837161
227 11914.00 −4.975692 3.833674
228 11919.00 −4.864691 3.830194
229 11924.00 −4.763636 3.826720
230 11929.00 −4.670869 3.823254
231 11934.00 −4.585117 3.819795
232 11939.00 −4.505380 3.816343
233 11944.00 −4.430857 3.812897
234 11949.00 −4.360900 3.809459
235 11954.00 −4.294974 3.806028
236 11959.00 −4.232644 3.802605
237 11964.00 −4.173512 3.799188
238 12000.00 −3.819016 3.774788
239 12100.00 −3.181885 3.708845
240 12200.00 −2.772388 3.645494
241 12300.00 −2.470868 3.584609
242 12400.00 −2.233180 3.526073
243 12500.00 −2.037926 3.469776
244 12600.00 −1.873044 3.415612
245 12700.00 −1.731026 3.363485
246 12800.00 −1.606859 3.313302
247 12900.00 −1.497025 3.264975
248 13000.00 −1.398948 3.218422
249 13100.00 −1.310685 3.173567
250 13200.00 −1.230730 3.130335
251 13300.00 −1.157891 3.088657
252 13400.00 −1.091206 3.048468
253 13500.00 −1.029888 3.009706
254 13600.00 −0.9732839 2.972312
255 13700.00 −0.9208464 2.936231
256 13800.00 −0.8721094 2.901409
257 13900.00 −0.8266758 2.867798
258 14000.00 −0.7842017 2.835349
259 14100.00 −0.7443893 2.804018
260 14200.00 −0.7069778 2.773762
261 14300.00 −0.6717373 2.744539
262 14400.00 −0.6384651 2.716313
263 14500.00 −0.6069801 2.689046
264 14600.00 −0.5771215 2.662703
265 14700.00 −0.5487446 2.637251
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266 14800.00 −0.5217186 2.612658
267 14900.00 −0.4959261 2.588894
268 15000.00 −0.4712596 2.565931
269 15100.00 −0.4476219 2.543740
270 15200.00 −0.4249241 2.522297
271 15300.00 −0.4030842 2.501575
272 15400.00 −0.3820317 2.481552
273 15500.00 −0.2537031 2.457054
274 15600.00 −0.2314214 2.431130
275 15700.00 −0.2100757 2.405610
276 15800.00 −0.1896170 2.380485
277 15900.00 −0.1699997 2.355747
278 16000.00 −0.1511804 2.331387
279 16100.00 −0.1331194 2.307398
280 16200.00 −0.1157795 2.283772
281 16300.00 −9.9125974E−02 2.260503
282 16400.00 −8.3125629E−02 2.237581
283 16500.00 −6.7748182E−02 2.215002
284 16600.00 −5.2964929E−02 2.192758
285 16700.00 −3.8748894E−02 2.170842
286 16800.00 −2.5074953E−02 2.149248
287 16900.00 −1.1918684E−02 2.127970
288 17000.00 7.4218388E−04 2.107000
289 17100.00 1.2928919E−02 2.086334
290 17200.00 2.4661615E−02 2.065966
291 17300.00 3.5959065E−02 2.045889
292 17400.00 4.6839688E−02 2.026098
293 17500.00 5.7320297E−02 2.006588
294 17600.00 6.7417055E−02 1.987354
295 17700.00 7.7145278E−02 1.968389
296 17800.00 8.6519368E−02 1.949690
297 17900.00 9.5553502E−02 1.931251
298 18000.00 0.1042607 1.913067
299 18100.00 0.1126534 1.895134
300 18200.00 0.1207435 1.877446
301 18300.00 0.1285424 1.860001
302 18400.00 0.1360610 1.842792
303 18500.00 0.1433097 1.825816
304 18600.00 0.1502983 1.809069
305 18700.00 0.1570361 1.792546
306 18800.00 0.1635175 1.776244
307 18900.00 0.1697807 1.760158
308 19000.00 0.1758191 1.744285
309 19100.00 0.1816405 1.728621
310 19200.00 0.1872524 1.713162
311 19300.00 0.1926621 1.697905
312 19400.00 0.1978766 1.682846
313 19500.00 0.2029025 1.667982
314 19600.00 0.2077461 1.653309
315 19700.00 0.2124137 1.638824
316 19800.00 0.2169109 1.624525
317 19900.00 0.2212437 1.610407
318 20000.00 0.2254172 1.596468
319 20100.00 0.2294368 1.582704
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320 20200.00 0.2333074 1.569113
321 20300.00 0.2370338 1.555692
322 20400.00 0.2406207 1.542439
323 20500.00 0.2440726 1.529349
324 20600.00 0.2473937 1.516421
325 20700.00 0.2505882 1.503651
326 20800.00 0.2536599 1.491039
327 20900.00 0.2566130 1.478580
328 21000.00 0.2594509 1.466272
329 21100.00 0.2621772 1.454113
330 21200.00 0.2647954 1.442100
331 21300.00 0.2673087 1.430232
332 21400.00 0.2697205 1.418505
333 21500.00 0.2720338 1.406918
334 21600.00 0.2742515 1.395469
335 21700.00 0.2763766 1.384154
336 21800.00 0.2784117 1.372973
337 21900.00 0.2803596 1.361922
338 22000.00 0.2822230 1.351001
339 22100.00 0.2840042 1.340206
340 22200.00 0.2857057 1.329536
341 22300.00 0.2873298 1.318990
342 22400.00 0.2888789 1.308565
343 22500.00 0.2903550 1.298259
344 22600.00 0.2917604 1.288070
345 22700.00 0.2930970 1.277997
346 22800.00 0.2943668 1.268039
347 22900.00 0.2955718 1.258192
348 23000.00 0.2967138 1.248456
349 23100.00 0.2977946 1.238830
350 23200.00 0.2988158 1.229310
351 23300.00 0.2997794 1.219897
352 23400.00 0.3006867 1.210587
353 23500.00 0.3015394 1.201380
354 23600.00 0.3023391 1.192275
355 23700.00 0.3030872 1.183269
356 23800.00 0.3003767 1.174414
357 23900.00 0.3010126 1.165682
358 24000.00 0.3016027 1.157046
359 24100.00 0.3021481 1.148504
360 24200.00 0.3026502 1.140054
361 24300.00 0.3031102 1.131696
362 24400.00 0.3035291 1.123428
363 24500.00 0.3039081 1.115249
364 24600.00 0.3042483 1.107157
365 24700.00 0.3045507 1.099151
366 24800.00 0.3048164 1.091230
367 24900.00 0.3050463 1.083393
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